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Physics-based Quadratic Deformation Using
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Abstract—This paper presents a spatial reduction framework for simulating nonlinear deformable objects interactively. This reduced
model is built using a small number of overlapping quadratic domains as we notice that incorporating high-order degrees of freedom
(DOFs) is important for the simulation quality. Departing from existing multi-domain methods in graphics, our method interprets
deformed shapes as blended quadratic transformations from nearby domains. Doing so avoids expensive safeguards against the
domain coupling and improves the numerical robustness under large deformations. We present an algorithm that efficiently computes
weight functions for reduced DOFs in a physics-aware manner. Inspired by the well-known multi-weight enveloping technique, our
framework also allows subspace tweaking based on a few representative deformation poses. Such elastic weighting mechanism
significantly extends the expressivity of the reduced model with light-weight computational efforts. Our simulator is versatile and can be
well interfaced with many existing techniques. It also supports local DOF adaption to incorporate novel deformations (i.e. induced by
the collision). The proposed algorithm complements state-of-the-art model reduction and domain decomposition methods by seeking
for good trade-offs among animation quality, numerical robustness, pre-computation complexity, and simulation efficiency from an
alternative perspective.

Index Terms—Quadratic deformation, FEM, Model reduction, Domain decomposition, Weight function.
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1 INTRODUCTION

R Ealistically simulating nonlinear deformable objects is
known to be expensive, which drives a great amount of

research efforts for developing accelerating techniques. An intu-
itive thought is to leverage the fact that deformations in reality
are often of low rank, as elastic material models themselves
effectively penalize high-frequency shape variations. Speedups of
orders of magnitude can be obtained by removing less important
degrees of freedom (DOFs). The core question for such model
reduction method is how to utilize limited DOFs to achieve a
better deformation expressivity. This objective is often dealt with
either spectrally or spatially.

Spectral subspace methods assign each DOF with a global
representative modal shape or mode, often obtained using PCA or
modal analysis [3], [4]. They rely on a dedicated pre-computation
to select key modes. Some recent research further accelerates the
pre-computation [5], [6] nevertheless, it is still at the order of
O(rN2), where r stands for the number of modes and N is the size
of the input model. It is also known that a globally constructed
modal subspace lacks the capability of capturing local defor-
mations. To remedy this limitation, the domain decomposition
method (DDM) trends to be a more attractive option. It allows
a domain-level mode customization and makes the local pre-
computation much more efficient (i.e. O(rN2/d) for d domains,
which is parallelizable and re-usable if domains are of the same
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Fig. 1: Overlapping quadratic domains make the simulation robust
even under large deformations. The one-inch-tall bunny model is
forced to pass a funnel whose inner diameter is only 0.3 inch.
Our method yields plausible animations (the red bunny) at an
interactive rate comparable to the fullspace simulation (the blue
bunny). Most existing non-overlapping multi-domain simulators
(i.e. [1], [2]) fail in this challenging test. Indeed, our simulator
remains stable even when the funnel’s diameter is reduced to
0.2 inch (Fig. 16). Please refer to the supplementary video and
executables for more details.

geometry). When domains are non-overlapping, the influence of
domain’s subspace is analogous to the nodal shape function in
the finite element method (FEM), which evaluates 1 locally and
0 elsewhere. As an unpleasant consequence, domains need to be
explicitly coupled due to such boundary discontinuity. This gives
rise to another concern regarding the simulation robustness under
large deformations. Highly deformed domain interfaces could
fail most coupling methods adopted in existing nonlinear multi-
domain simulators like rigid binding [1], damped springs [7], or
coupling elements [2].

Another collection of acceleration techniques, referred to as
spatial reduction here, scatters DOFs sparsely over the deformable
body and utilizes blending functions to express the deformation
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in between, similar to the Cage-based [8] or the Free-from [9]
schemes widely used for shape modeling. Here, the concept of
DOF is not limited to the nodal displacement. It could be a
linear transformation field [10], a local coordinate frame [11], or
an integration unit [12]. The adopted blend or weight functions
smoothly mix deformations across domains and unnecessitate an
explicit domain coupling. As a result, the spatial reduction behaves
more stably against extreme deformations. This framework is also
better suited for local adaptivity and refinement [13], [14] than
the spectral method. On the downside, since weight functions are
typically calculated geometrically, they do not accommodate real
material parameters like the Young’s modulus and the Poisson’s
ratio. The deviation of the resulting deformation from the fullspace
standard is often visually noticeable.

Single-domain
spectral 
reduction

Multi-domain
spectral 
reduction

Spatial
 reduction Our method

Fast 
pre-computation
Good nonlinear

expressivity
Robust under

large deformation
Good local
adaptivity

Fig. 2: Pros and cons of existing single- and multi-domain reduc-
tion techniques for nonlinear deformable models.

As outlined in Fig. 2, our method supplements state-of-the-art
spatial reduction techniques and tries to provide better answers to
following three important how-tos:
• How to choose suitable deformation DOFs?
• How to assign limited DOFs in a more profitable way?
• How to design a good weight function?

We show that it is essential, for nonlinear models, to employ
high-order DOFs in the spatial reduction, and we build our reduced
simulator using overlapping quadratic domains so that it remains
stable even under extreme-scale deformations. Orthogonal to ex-
isting geometric weighting methods, we propose a new physics-
based strategy yielding local, smooth and material-respecting
weight functions. We borrow the idea of multi-weight enveloping
(MWE) for animation skinning [15] and fine-tune weight functions
based on a few given representative deformations. Experiments
(i.e. an example is given in Fig. 1) show that such augmentation
enhances the expressivity of the reduced model significantly even
with few input poses. This elastic weighting mechanism is efficient
and adaptable so that adding new quadratic DOFs at the simulation
runtime is possible.

2 RELATED WORK

Physics-based deformable model has been extensively studied
in computer graphics. We refer readers to excellent review arti-
cles [16], [17] for a comprehensive overview of classic deformable
simulation algorithms. Speeding up a deformable simulation can
be achieved using dedicated numerical treatments like the multi-
grid method [18], [19], an incremental matrix update [20], or
parallelizable nonlinear solvers [21], [22]. These methods focus
on improving the performance for the fullspace nonlinear op-
timization without condensing simulation DOFs. On the other

hand, spectral reduction methods remove less important DOFs and
create a reduced or subspace representation of fullspace DOFs (i.e.
u = Uq). Modal analysis [3], [23], [24] and its first-order modal
derivatives [4] are often considered as the most effective way for
the spectral subspace construction. Yang and colleagues [6] used
Krylov iteration with reduced orthogonalization to further speed
up this calculation. Displacement vectors from recent fullspace
simulations can also be utilized as subspace bases [25].

Earlier spectral reduction techniques compute U globally,
which become a bit awkward when localized deformations are
desired unless the user includes a large number of modal bases. As
a response to this limitation, domain decomposition methods, orig-
inally designed for large-scale numerical partial differential equa-
tions (PDEs), have been imported to graphics. As subspaces are
constructed at domains, local deformations can be better handled.
Many existing multi-domain solvers are non-overlapping. Conse-
quently – domains must be explicitly constrained at boundaries,
which stands as a primary challenge for state-of-the-art multi-
domain deformable models. Roughly speaking, domain coupling
can be achieved either geometrically [1], [26] by enforcing the
shape continuity at the interface, or physically [2], [7] by plugging
in coupling forces between adjacent domains. Recently, overlap-
ping domain decomposition has also been explored in graphics.
Xu and Barbič [27] used bounded bi-harmonics weights (BBW)
to blend local modal derivative bases for localized deformations.
While targeting on character skinning, it implies that overlapping
domain decomposition is a feasible solution for local deformation
effects. Following this direction, our method can also be consid-
ered as an overlapping domain decomposition system. Unlike [27],
which geometrically blends physically-computed subspace bases,
our method physically blends geometrically-constructed bases.

Alternatives are also possible for local deformations. For
instance, Harmon and Zorin [28] made the fast simulation of
contact-trigger deformations possible by adding local modal sub-
spaces based on the Boussinesq solution. However, this method
becomes less powerful when handling other types of local defor-
mations. Teng and colleagues [29] extended the linear condensa-
tion to handle unpredicted deformations by evoking the fullspace
simulation locally.

Our algorithm falls into another category of spatial reduction
methods. Inspired by the superior accuracy of the higher-order fi-
nite element method [30], [31], we choose to build our deformable
model based on overlapping quadratic domains, and each domain
can be considered as a generalized super element. Our method also
shares similar spirits of the shape match method [32]. Unlike shape
matching however, our dynamics formulation is fully physics-
based. Material parameters are fully incorporated in our reduced
representation. This is achieved by encoding physically calculated
shape functions, which is referred to as elastic weighting in
this article. Calculating weight functions for shape interpolation
has been widely studied in computer animation (see e.g. [33]).
The harmonic coordinate [34], radial basis function (RBF) [35]
and mean value coordinate (MVC) [36], [37] are a few classic
paradigms. Similar techniques are also used in meshless simula-
tions: Martin and colleagues [12] used the generalized moving
least square (GMLS) for local deformation gradient evaluation.
Gilles and colleagues [11] used harmonic kernels to blend rigid
body motions for a skinning-like simulation.

We are not the first trying to accommodate material-awareness
in the weight function calculation. Faure and colleagues [10] built
shape functions using stiffness-scaled distance or the compliance



3

distance. However, the other important material parameter of
Poisson’s ratio is disregarded. Nesme and colleagues [38] used
static analysis to compute the weight function, which is similar to
our approach. Yet, it is not clear how boundary conditions should
be imposed. Meanwhile, it is difficult to rely on a single weight
function to describe complex nonlinear deformations across the
deformable body. Consequently, we calculate supplementary dif-
ferential weight functions for quadratic DOFs based on few given
representative deformation poses. This approach is similar to the
multi-weight enveloping [15], [39].

3 QUADRATIC DOFS

αRest shape
Shear lock with
Linear DOFs Quadratic DOFs

Before starting a
detailed discussion
of our overlapping
multi-domain simu-
lator, we first show that quadratic DOFs are important in spatial
reduction. Illustrated as the inset, think of simulating a simple
2D square under the pure bending using quadrilateral elements.
Because only bending moments are applied, the angle α should
be unchanged and retain right during the bending. Unfortunately,
if the local subspace (i.e. shape functions of the quad-element)
is linear, straight lines stay straight, and an artificial shear stress
will be produced because α cannot be a right angle. More
importantly, the shearing energy often increases one- or even two-
order (depends on the element’s geometry) faster than the real
bending energy, which stiffens the deformable body. This artifact
is known as the shear locking of linear elements. Shear locking
is suppressed when the elements arrangement is dense as in most
FEM based graphics simulations. However when simulation DOFs
are spatially sparse (i.e. in our case), the locking issue becomes
much more severe if we only have affine/linear [10] or rigid [11]
DOFs.

To further illustrate this issue, we show
an extreme example with side-by-side compar-
isons among several popular choices for local
DOFs in Fig. 3. The beam model undergoes

a pure bending test, where external forces applied are always
perpendicular to its neutral axis. The force magnitude linearly
varies along the neutral axis (as shown on the left). Under this
circumstance, the deformable object will only have nonlinear
bending deformation. This simulation is particularly challenging
for linear elements. As shown in the figure, even with the cor-
rection of the invertible finite element (IFE) method [40], the
fullspace simulation using linear tetrahedral elements still fails
this test. While quadratic 10-node tetrahedral elements produce a
convincing ground truth result (with the cost of a much slower
simulation). We evaluate the bending quality by examining the
shearing angle as marked in the figure. A single quadratic do-
main (30 DOFs) captures the bending better than three affine
domains [10] (36 DOFs) and five rigid domains [11] (30 DOFs).

4 DEFORMABLE QUADRATIC MODEL

We design our reduced model using overlapping quadratic do-
mains. Each domain houses 30 DOFs grouped into 3 translation
DOFs, 9 affine DOFs, 9 quadratic homogenous DOFs, as well as
9 quadratic heterogenous DOFs. The kinematics of an individual
domain is the same as in [12]. A domain only influences a local
region, and the global deformation is obtained by combining
contributions from multiple nearby domains.

Time step
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Fig. 3: We apply pure bending moments along the neutral axis
of the beam model. The bending quality is measured using the
maximum shearing angle along the neutral axis. Our method yields
a much smaller shearing locking artifact than other competitors
including affine DOFs [10], and rigid DOFs [11]. The ground
truth is the result using fullspace quadratic tetrahedral elements.
Under such challenging bending test, even fullspace simulation
using linear elements will fail.

Kinematics For a given material point P on the deformable
body, we denote x = [x1,x2,x3]

> and u = [u1,u2,u3]
> as its

rest shape position and displacement. A nearby domain imposes
a quadratic influence to its displacement components such that
ui = x>Qix+ a>i x+ ti for i = 1,2,3. Qi ∈ R3×3 is a symmetric
tensor encoding the iso-quadratic DOFs. We put its three diagonal
DOFs into a vector qoi = [Q11,Q22,Q33]

> and name it as ho-
mogenous DOFs. Similarly, the vector qei = [2Q12,2Q23,2Q13]

>

containing off-diagonal entries of Qi is referred to as heterogenous
DOFs. The affine DOF a ∈ R3 describes how ui is linearly related
to its rest position, and ti is a translation DOF. Each type of
deformable DOFs from different domains are convexly combined,
and the ith displacement component of P can be written as:

ui = ∑
j

w j
(

t j
i +a j>

i x+q j>
oi

x̃+q j>
ei

x̂
)
, (1)

where w j is the location-dependent weight coefficient indicating
how much domain j affects the displacement of P. x̃= [x2

1,x
2
2,x

2
3]
>

and x̂ = [x1x2,x2x3,x1x3]
> are second-order homogenous and

heterogenous vectors of P. By stacking all the DOFs from
the jth domain into a single vector q j ∈ R30 such that q j =

[t j> ,a j>
1 ,a j>

2 ,a j>
3 ,q j>

o1 ,q
j>
o2 ,q

j>
o3 ,q

j>
e1 ,q

j>
e2 ,q

j>
e3 ]
>, the displacement

of P can be concisely expressed as a matrix-vector product:

u = G jq j =
[
G j

t |G j
a|G j

o|G j
e

]
q j, (2)

where

G j
t = w jI, G j

a = w jI⊗x>, G j
o = w jI⊗ x̃>, G j

e = w jI⊗ x̂>.

We call matrix G j the geometric displacement matrix, and the
generalized coordinate q j prescribes P’s kinematic configuration
as:

u̇ = ∑
j

G jq̇ j, ü = ∑
j

G jq̈ j. (3)

Reduced dynamics Let ei denote canonical basis vectors of R3,

and we drop the domain superscript [·] j for succincter notations.
Based on Eq.(1), each row of the deformation gradient tensor F =
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[F1,F2,F3]
> ∈R3×3 can be written as Fi = Fti +Fai +Foi +Fei +

ei, where

Fti = ∑∇wti, Fai = ∑a>i x∇w+wa>i ,
Foi = ∑q>oi

x̃∇w+wq>oi
X̃, Fei = ∑q>ei

x̂∇w+wq>ei
X̂,

and

X̃ =

 x2 x1 0
0 x3 x2
x3 0 x1

 , X̂ =

 2x1 0 0
0 2x2 0
0 0 2x3

 .
Here we assume that ∇w is a column 3-vector. On the top of
F, one can evaluate the nonlinear Green strain, E = 1

2 (F
>F− I),

and proceed to express the strain energy density Ψ as well as
the first Piola-Kirchhoff stress tensor (PK1) based on the chosen
material model. Our framework works with most hyperelastic
materials, and in this paper we choose to use the St. Venant-
Kirchhoff (StVK) model since it is capable of producing most
desired deformation effects for computer animation. With the
StVK model, the energy density and PK1 are formulated as:
Ψ = µE : E + λ

2 tr2(E) and P = F[2µE + λ tr(E)I] respectively,
where λ and µ are the Lamé parameters. The per-domain reduced
internal force f̃int and its gradient ∂ f̃int/∂q are computed as:

f̃int =−
∫

P :
∂F
∂q

dV, (4)

and
∂ f̃int

∂q
=−

∫ (
∂P
∂F

:
∂F
∂q

)>
:

∂F
∂q

dV. (5)

Here, ∂F/∂q ∈ R3×3×30 is a block-sparse 3-tensor, which can be

it
∂

∂

F
t

ia∂

∂

F
a

i

o

o∂

∂

F
q

ie

e

∂

∂

F
q

i∂
∂
F
q

1i =
2i =
3i =

understood as the superposition of
three layers as shown on the right.
The ith layer represents the ma-
trix ∂Fi/∂q and it hosts four sub-
matrices: ∂Fti/∂ t, ∂Fai/∂a, ∂Foi/∂qo
and ∂Fei/∂ae. These sub-matrices are
block-sparse as the partial derivative
is nonzero only when subscripts of generalized coordinates agree
with each other. Each nonzero block can be easily calculated as:

∂Fti
∂ ti

= ∇w,
∂Fai

∂ai
= ∇w⊗x+wI,

∂Foi

∂qoi

= ∇w⊗ x̃+wX̃>,
∂Fei

∂qei

= ∇w⊗ x̂+wX̂>.
(6)

Applying temporal discretization using the implicit Euler in-
tegration leads to the final nonlinear system to be solved at each
time step:

(M̃−hC̃−h2 ∂ f̃int

∂q
)∆q̇ = h̃fext +h2 ∂ f̃int

∂q
q̇, (7)

where M̃ is the reduced mass matrix, which can be evaluated
block-wisely: M̃i j =

∫
ρGi>G jdV ; f̃ext is the generalized external

force; h is the time step size; and C̃ is the reduced damping matrix.

5 PHYSICS-BASED ELASTIC WEIGHTING

Analogous to FEM shape functions that blend nodal quantities
volumetrically within an element, the weight function w(x) in-
terpolates local quadratic transformations to produce the final
global result. An ideal weighting mechanism should be material-
customized so that sparsely allocated DOFs well capture the

nonlinear dynamics. To this end, we utilize the per-domain static
equilibrium to retrieve the most physically meaningful weight
distribution with carefully prescribed boundary conditions. It may
be difficult to depict complex deformations with a single weight
function. To address this challenge, we use a method similar to
the multi-weight enveloping [15] to customize weight distributions
for quadratic DOFs using an alternating optimization. The block-
sparse matrix brought by decomposed domains allows a block-
Jacobi solver to update weight coefficients efficiently.

D1: + +
D2: + +
D3: + +
D4: + +

Voronoi
segmentation

Connectivity
graph

Final domain
decomposition

Fig. 4: Decompose a deformable body into four domains.

Domain decomposition The input tetrahedral mesh is de-
composed into overlapping domains. As illustrated in Fig. 4,
the domain decomposition starts with subdividing the mesh into
non-overlapping segments as in [10], [11]. While many well-
established mesh segmentation algorithms are available [41], we
found that a centroid Voronoi tessellation typically suffices. Initial
seeds of each Voronoi cell are obtained by a regular sampling
within the bounding box of the input model, followed by a few
Lloyd iterations [42]. Users are allowed to manually specify seg-
ments with the provided interface too. After that, we can extract an
undirected graph G(V ,E) encoding the connectivity information
of the resulting Voronoi segmentation such that each vertex vi ∈ V
on the graph represents a Voronoi cell and 〈vi,v j〉 ∈ E iff vi and v j
share at least a triangle face. Finally, a domain is defined as a set of
face-connected tetrahedrons from the ones in vi and vi’s adjacent
segments, and its seed is the seed of vi. Note that it is possible
that domains have the same collection of elements. For instance
in Fig. 5 the red and purple, and the blue and green domains
coincide with each other entirely, but they have complimentary
weight functions.

Fig. 5: The Voronoi segmentation and corresponding domain
decomposition of the bunny model.

Principal direction The weight function of a domain ought to
comply with the pattern describing how the deformation amplitude
dissipates from its seed, where the maximum local displacement
occurs. Following this thought, a reasonable way is to solve a
static equilibrium [10], [38], by imposing an external nodal force
fs at the seed while retaining other neighbor seeds and domain’s
boundary. Unfortunately, this solution is ill-defined as we have
infinite numbers of choices for applying fs – obviously they lead
to different weight distributions especially when the domain’s
geometry and material are irregular.

We resolve this ambiguity by restricting fs along the principal
direction p. It can be understood as the most deformable direction
such that domain’s displacement is maximized when fs = p. Let
[·]s and [·]n denote domain’s (three) seed DOFs and non-seed
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DOFs1. We partition domain’s stiffness matrix accordingly and
the principal direction of the domain can be mathematically for-
mulated as a quadratically constrained quadratic program (QCQP)
problem:

argmax
p

‖u‖

subject to

 Kss Ksn 0
K>sn Knn C>
0 C 0


︸ ︷︷ ︸

K

 us
un
λ

=

 p
0n
0λ

 ,
and ‖p‖= 1.

(8)

Here λ is the unknown multiplier vector. C is a constraint
matrix prescribing necessary boundary conditions, which in-
clude: 1) user specified constraints like anchor nodes; 2) seeds
of neighbor Voronoi cells; and 3) domain’s boundary DOFs
(as shown on the right). Doing so makes the resulting weight
function always evaluate 1 at its own seed and 0 at others’.
It is also local and has a vanished influence outside the do-
main. K is the domain’s stiffness matrix (using linear elements).

User-specified constraint

Neighbor seeds

Domain boundary

Boundary cond. for + +

In general, QCQP is NP-hard [43].
However as Eq. (8) only activates
low-dimensional equality constraints,
it can be efficiently solved. To do so,
we first rewrite the linear constraint
term in Eq. (8) using partitioned com-
pliance matrix L (i.e. L , K−1) as: us

un
λ

=

 Lss Lsn Lsλ

L>sn Lnn Lnλ

L>sλ
L>nλ

Lλλ

 p
0n
0λ

 ,
which leads to

u =

[
us
un

]
=

[
Lss
L>sn

]
p , L̃p. (9)

While evaluating the full L matrix is expensive, L̃ only has three
columns and it can be quickly computed by solving:

K

 Lss
L>sn
L>sλ

=

 Is
0n
0λ

 . (10)

Recalling that KL = I, it is easy to understand that the right hand
side of Eq. (10) is simply the first three column of the identity
matrix. After that, the target function to be maximized becomes:

‖u‖=
√

p>Bp, B = L̃>L̃. (11)

B is a symmetric positive definite (SPD) matrix and can be
diagonalized with the eigenvalue decomposition as: B = R>ΣR,
where Σ = diag(d1,d2,d3), d1 ≤ d2 ≤ d3 is the diagonal matrix
of eigenvalues. R is an orthonormal matrix. Substituting B by
R>ΣR in Eq. (11) yields:

‖u‖=
√
(Rp)>diag(d1,d2,d3)(Rp)≤

√
d3. (12)

It shows that ‖u‖ reaches the maximum value
√

d3 when p is the
eigenvector of B corresponding to its largest eigenvalue.

1. Seed DOFs are the x, y, and z displacement freedoms of the domain’s
seed node while non-seed DOFs are the DOFs of the non-seed nodes.

Neighbor seeds
Boundaries

Local seed
(a)

(b)

Fig. 6: (a) Anchoring bound-
ary nodes completely re-
sults in weight damping. (b)
Principal projection yields
smoother weight functions.

Principal weight & principle
projection After p is ready, one
can solve domain’s static equilib-
rium prescribing p as the seed dis-
placement and use the norm of the
corresponding nodal displacement
as its weight coefficient. Unfor-
tunately, the resulting weight dis-
tribution leads to noticeable lock-
ing artifacts. Reasons are twofold.
First, using the displacement norm
as weight coefficients rules out the
possibility of negative weight val-
ues, which are essential for high-
order overlapping shape/weight functions. Second, when nodes are
completely fixed, weight distributions among them are damped (as
shown in Fig. 6 (a)) making the corresponding region artificially
stiffened. The solution is simple: since the principal direction
reveals the most deformable direction of the domain, we should
only consider the displacement along it other than incorporating
information from “less important” directions.

Following this rationale, we allow all the constrained nodes
to move on a plane perpendicular to the principal direction and
only restrict their displacements along p. The resulting per-node
equilibrium displacement is also projected on p as the final prin-
cipal weight. As illustrated in Fig. 6 (b), such principal projection
is able to produce a natural and smooth weight distribution with
necessary negative values across the domain. Clearly, the principal
direction plays an essential role forming the principal weight
function. Since different deformations propagate over the domain
with different patterns, the principal direction effectively captures
the most dominant one. Thus, animations produced using the
principal weight are often distinguishably better. A simple test
shown in Fig. 7 validates the importance of principal direction.
In this test, the beam model only has one domain seeded at the
middle. The principal direction is vertical to its neutral axis. We
compare its deformation using weight functions calculated under
a direction that is gradually away from the principal one (from 0◦

to 90◦ as shown in the figure). It can be clearly seen that the more
it diverges from the principal direction, the more locking artifacts
are observed.

Elastic weighting encodes both domain’s material and geom-
etry information. Our experiment shows that the principal weight
yields more realistic animations compared with geometry-based
weights (e.g. harmonic coordinate [34], RBF [35] or MVC [36],
[37]) especially when the material of the deformable body is
heterogeneous (e.g. see §7, Fig. 12).

Elastic multi-weight enveloping While the principal weight
function captures most visible deformations and produces natural
results in general, the expressivity of our reduced model can be
further enriched by using more customized weight functions at
high-order DOFs, given a few representative shapes. Our method
is similar to the multi-weight enveloping method [15], and we
name this approach as elastic multi-weight enveloping (EMWE).
Since the Cubature scheme [44] is also used for a fast runtime
integration. Such shapes can be picked out of the Cubature training
pose set if not specially provided.

We split domain’s geometric displacement matrix G (i.e.
Eq. (2)) into two sub-matrices G = [Y|Z] defined as Y = [Gt |Ga]
and Z= [Go|Ge] housing the linear and quadratic parts of G matrix
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Fig. 7: Computing weight function along different directions other
than the principal direction leads to locking artifacts. (a) shows
the rest shape of the beam, whose principal direction is along
the y axis. We show its equilibrium shapes under the gravity
using weight functions calculated with directions further and
further away from the principal direction. The resulting shapes
are aggregated for the comparison. The ground truth is also given
in (c). In (d) we plot the relative shape difference for different
directions.

respectively. Similarly, we subdivide domain’s reduced coordinate
into y = [t>,a>1 ,a

>
2 ,a

>
3 ]
> and z = [q>o1

,q>o2
,q>o3

,q>e1
,q>e2

,q>e3
]> so

that u = Gq = Yy+Zz.
Y matrix is constructed using the principal weight function

discussed previously. For a given exemplar shape uk, we compute
its residual error vector as:

∆uk ,
(

I−Y(Y>Y)−1Y>
)

uk, (13)

which is a difference vector between the shape uk and its best-
fitting reduced representation in the column space of Y (i.e.
(YY>)−1Y>uk). Our goal is to minimize ‖∆uk−Zz‖ by assigning
each quadratic DOF an independent isotropic weight function so
that uk can be well expressed in the subspace. Mathematically, this
reflects an updated formulation for Go and Ge:

Go = I⊗
(

w>o diag(x̃)
)

Ge = I⊗
(

w>e diag(x̂)
)
, (14)

where wo,we ∈R3 are weight coefficients for homogenous (x2
1, x2

2,
x2

3) and heterogenous (x1x2, x2x3, x1x3) quadratic DOFs. We split
Zz into homogenous and heterogenous parts as Zz=Gozo+Geze.
A few manipulations extract the homogenous weight vector as:

Gozo =
[
I⊗ (w>o diag(x̃))

]
zo

= (I⊗ x̃>)(I⊗diag(wo))zo

= (I⊗ x̃>)
[
diag(qo1)|diag(qo2)|diag(qo3)

]>︸ ︷︷ ︸
Wo

wo.

(15)
Together with We =(I⊗ x̂>)

[
diag(qe1)|diag(qe2)|diag(qe3)

]>,
we construct the matrix W = [Wo|We] such that Zz = Ww, where
w = [w>o ,w>e ]> is the quadratic weight vector. Clearly, both
z and w are unknown and final weight coefficients should be
calculated alternatingly. We initialize w as the principal weight,
fix it, and compute the current optimal z using least square as:
z ← (Z>Z)−1Z>∆uk. Afterwards, z is fixed, and we compute
the optimal w respecting the updated z. The iteration stops when
‖∆uk−Ww‖ converges.

To avoid irregular weight distributions, we also added a
penalty term when solving w. Let L ∈ R6N×6N be a graph-
Laplacian matrix computing the weight difference between a node
and its local average. The augmented optimization for w becomes:

argmin
w
‖∆uk−Ww‖+α‖Lw‖, (16)

which leads to the final weight update as w ← (αL>L +
W>W)−1W>∆uk. Here, we set α = 0.1 in all of our experiments.
αL>L+W>W∈R6N×6N is a big matrix and explicitly factorizing
it is expensive. Fortunately, it is also block dominant since W>W
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groundtruth
10,800 DOFs

Our method
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single domain
30 DOFs

Modal derivative
single domain
60 DOFs

Our method
with EMWE
single domain
30 DOFs

Affine frames
3 frames 
36 DOFs

frame 0 frame 200Training poses

Fig. 8: Comparative simulation of a winding snake.
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is block diagonal. As a result,
we use the iterative block-Jacobi
solver to solve w efficiently. For in-
stance for the bunny model, block-
Jacobi can complete one weight
update within tens of milliseconds
while the Pardiso solver takes

several seconds. As shown on the left, few (3 to 5 iterations)
alternations are sufficient to produce good quadratic weights.

EMWE enriches the expressivity of the geometric displace-
ment matrix and allows interesting deformable effects that could
be challenging for exiting methods with similar numbers of sim-
ulation DOFs. Fig. 8 reports snapshots from a set of comparative
simulations of a winding snake model. A circular force field is
applied and the fullspace simulation with 10,800 DOFs winds
the snake for about 800◦ (i.e. 360◦+ 360◦+ 180◦) as shown in
the first row in the figure. Applying the principal weight for all
the 30 DOFs only yields a 360-degree wind (second row in the
figure). This result is similar to what one could obtain using modal
derivatives [4] with 30 modal bases. However, EMWE using only
three poses is able to improve the resulting animation making it
visually similar to the fullspace result (third row in the figure).
This result is even more plausible than modal derivatives with
60 bases (forth row in the figure). Notice that training poses
used are quite different from the final frame of the fullspace
simulation. Indeed, these poses simply imply that larger weights
should be assigned to quadratic DOFs at the middle part of the
snake. The entire EMWE training takes less than 300 ms. Results
using multiple domains but with only affine transformations as
in [10] are also reported in the bottom row. Clearly our method
outperforms the spatial reduction using linear DOFs.

6 ADAPTABILITY AND EXTENSIBILITY

Assembling G only needs to solve domain’s rest-shape stiffness
matrix (i.e. for handling Eq. (10) and computing the principal
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weight), which is efficient and allows an interactive DOF adaption
during the simulation runtime to incorporate novel deforma-
tions, for example induced by collisions. Besides, the locality
of domain’s subspace also makes the Cubature training orders
of magnitude faster and parallelizable at each Voronoi segment.
Overlapping domains do not need an explicit domain coupling
treatment. Therefore, our method is able to simulate extreme-
scale deformations robustly even when the mesh geometry is
degenerated.
Runtime domain adaption It is known that geometrically con-
structed shape functions can be conveniently altered and adapted
at the run time to accommodate new deformations [10], [45]. Our
elastic weighting function also possesses this property. Suppose a
novel deformation is triggered by a local contact on the deformable
body. A reasonable reaction is to add a new domain Da seeded at
the node where the deepest inter-penetration is found. Due to the
presence of Da, weight functions of existing domains that overlap
with Da need to be updated.

Consider a 1D example shown in Fig. 9. The original weight
function of an existing domain D seeded at S, as well as the newly-
plugged domains Da seeded at Sa are known. The weight interpo-
lating property requires that the updated weight w′ of D must have

Domain seed

Domain boundary

s as

New domain seed

( )aw S

w
aw

' ( )a aw w w S w= ⋅−

Bs as Bs B

Weight of Weight of  a Updated weight of 

Fig. 9: Left: the initial weight distribution w of an existing domain
seeded at S. Mid: the weighting function of a newly inserted
domain wa. Right: the updated weighting function w′ can be fast
obtained as the linear combination of w and wa.

vanished values at both B (the original domain boundary) and Sa
while remaining 1 at its own seed S. In other words, we seek
for a smooth function to offset w such that it becomes 0 at Sa
while its original values at S and B are unchanged. Interestingly,
wa serves this purpose perfectly as it evaluates 0 at both S and B
so that stacking wa over w will not change w’s original boundary
conditions. As a result, the updated weight function of D, after
Da is inserted, can be instantly obtained without resorting to the
re-computation from scratch as:

w′ = w−w(Sa) ·wa. (17)

It is noteworthy that such combination of weight functions
also agrees with the superposition principle of linear elasticity. If
principal directions of D and Da align each other, it can be shown
that the updated weight distribution w′ is identical to the fresh-
calculated elastic weight, under new boundary conditions. Eq. (17)
also implies that the new weight from Da supplements existing
subspaces rather than replacing them. In the example shown in
Fig. 10, a concentrated external force is applied at the facet center
of a rubber brick. Inserting a new domain correspondingly yields a
natural denting effect. The updated weight functions on the surface
are also plotted.
Parallelized local Cubature An efficient integration to com-
pute the reduced internal force and its gradient is important for
interactive deformable models. Barbič and James [4] found that
entries of f̃ and K̃ are low-degree polynomials of the reduced
displacement for StVK materials, whose coefficients can be pre-
computed. Another more general solution named Cubature [44]

uses 3D quadrature to approximate the internal force at a few
Cubature elements. Cubature was originally adopted for model
reduction using global bases, and we notice that this procedure
can be significantly accelerated under our framework due to the
locality of the per-domain subspace.

Fig. 10: Adding new do-
main produces natural dent-
ing effects on the brick.

It is clear that (i.e. in Fig. 4) el-
ements in the same Voronoi segment
are affected by the same subset of re-
duced DOFs from adjacent domains.
As a result, the Cubature training
can be carried out segment by seg-
ment. Such local training is indepen-
dent and can be trivially accelerated
with multi-threading. More impor-
tantly because a segment has much
fewer (typically less than 20) Cu-
bature points, the associated NNLS
(non-negative least square) solves run much faster than the
global Cubature training. For instance, training the bunny model
would take more than three hours with global bases, which
is only less than two minutes when domain-decomposed. Af-
ter the Cubature training is finished, the runtime evaluation of
force and force gradient is simplified as: f̃int ≈ ∑l ηlPl

∂Fl
∂q and

K̃≈∑l ηl(
∂Fl
∂q )>( ∂Pl

∂Fl
)> ∂Fl

∂q , where ηl is the non-negative Cubature
weight at the element l.

Recovering domain degeneration Some materials such as the
StVK model suffer the stability issue under a large compression.
This is because the constitutive law does not produce necessary
resisting forces to restore the volume from degeneration. This
issue is often invisible for spectral reduction methods as the high-
frequency displacements are already filtered by the subspace. Un-
fortunately, we do not have any mechanism preventing a domain
from inversion. To deal with the domain degeneration, we trans-
plant the invertible finite element or IFE method [40], [46] into our
framework. IFE alters singular values of F if they are smaller than
a certain threshold so that an element always produces restoring
internal forces. Doing so modifies the differential relation between
PK1 and the deformation gradient. We follow the formulation
in [47] to update ∂P/∂F. While F is linearly related to the reduced
coordinate, clamping its singular values does not alter this relation.
Therefore, ∂F/∂q remains unchanged.

Fig. 11: Use reduced IFE simulation to imitate the inflation of a
hot-air balloon. In this example, we simply use Cubature points as
restorative elements. Three domains are defined.

In general, IFE is slow because the deformation gradient at
each element must be checked and adjusted if necessary. This
leads to O(N) runtime efforts, and an interactive IFE simulation is
hardly possible for large meshes, where N stands for the total
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Fig. 12: Compare different weighting algorithms with a cylinder beam of heterogenous materials: the Young’s modulus of the beam
varies along its neutral axis. Two quadratic domains are set. The weight distributions from different algorithms are also plotted.

number of elements on the mesh. We note that such calcula-
tion could also be accelerated following the idea of numerical
quadrature, which has also been successfully utilized to resolve
self-contacts [48] recently. We follow the standard Cubature
procedure to find a small number of restorative elements R so
that the domain-wise restoring force can be well approximated at
restorative elements based on a set of degenerated training poses.
The runtime corrective forces resolving the volume inversion can
then be computed via:

f̃r = ∑
i∈R

υiG>i
[
fi(F̂i)− fi(Fi)

]
, (18)

where f(Fi) and f(F̂i) are element internal forces calculated
using the current deformation gradient Fi and the singular-value-
corrected deformation gradient F̂i. υi is the non-negative weight.
The approximation of Eq. (18) does not have to be precise, because
the restoring force itself is ad-hoc when a material failure occurs.
f̃r only provides a momentum to recover the degenerated volume,
and it will be replaced by regular Cubature forces as long as the
degeneration is resolved. In practice, the reduced IFE produces
physically-plausible responses under extreme deformations and it
is at least an order faster than the fullspace IFE method. Fig. 11
shows an example of using our reduced IFE to imitate inflating a
collapsed hot-air balloon.

Model #Ele #D #Cub Pre Sim FPS
Bunny 64K 5 389 2 (4.2%) 26 16
Balloon 56K 3 248 1 (3%) 55 25
Stay-Puft 49K 5 138 0.5 (5%) 23 13
Cactus 23K 4 102 0.2 (4.5%) 175 63
Armadillo 39K 6 348 1.5 (7%) 31 23

TABLE 1: Model statistics and simulation benchmarks. #Ele: the
number of elements on the simulation mesh; #D: the number of
initialized quadratic domains; #Cub: the number of cubature ele-
ments in total; Pre: pre-computation time in minutes (with multi-
threading enabled) and the accuracy of the Cubature training;
Sim: average FPS for simulating the deformable bodies (collision
handling not included). FPS: over all FPS including collision/self-
collision handling and OpenGL rendering.

7 EXPERIMENTAL RESULTS

Our system was implemented using Microsoft Visual
Studio 2013 on a Windows 10 X64 desktop PC equipped
with an Intel Core i7-5960 CPU and 12G RAM. Numeri-
cal algorithms were implemented on the top of Eigen C++ tem-
plate and Intel MKL library. Unless specified, the performance

reported is with the single-core implementation. The statistics of
tested 3D models and simulation benchmarks are summarized
in Tab. 1. Since our method uses the model reduction, all the
experiments run at an interactive rate, which is two to three orders
faster than the fullspace simulation. Here we would like to remind
readers that the EMWE is only used for funnelling the bunny
(Figs. 1 and 16) and winding the snake (Fig. 8) with six and
three training poses. All the other experiments discussed are based
on the principal weight and local adaption. After all, it is not
surprising that EMWE can produce highly stylized animations
similar to [49] with carefully selected weight training, which
makes the comparison unfair.

Weighting quality In the first experiment, we compare the
proposed elastic weighting with other widely-used weighting
algorithms including Harmonics weight [11], radial basis function
(RBF) [35], mean value coordinate (MVC) [37] and the method
used in [38]. As shown in Fig. 3, quadratic DOFs produce better
nonlinear bending than linear or rigid ones. Therefore, we use
two quadratic domains (i.e. 60 simulation DOFs) for all the tests
in order to eliminate the interference brought by using different
simulation DOFs.

The result is summarized in Fig. 12. Here, the material
distribution of the cylinder beam is not uniform. The fixed end
of the cylinder beam is stiffer where the Young’s modulus is set
as 10,000. The stiffness linearly decreases to 1,000 at the middle
region. The deformed shapes under the gravity are shown along
with the corresponding weighting distributions. One can see that
geometrically constructed weight functions (Harmonics, RBF and
MVC) yield results that do not reflect the material variation. Our
method with principal weights well handles such heterogenous
elastic object. In [38], the weight function is computed based on a
high-resolution equilibrium analysis which also takes the material
into account. Similar results can be obtained using compliance
distance [10], which augments the weight function with Young’s
modulus. However without computing the principal direction and
performing the principal projection, the locking artifact (near the
free end of the beam) is discernible. The fullspace ground truth
(using un-reduced FEM simulation of linear elements) is the
leftmost and the relative error of the free end displacement is also
plotted.

One may also notice from Fig. 12 that our weighting function
will have negative values occasionally. In fact, in the context
of overlapping domain decomposition having negative weighting
coefficient is essential to avoid the locking artifact. To explain
this argument, let us look at an illustrative toy example of a
1D element with two nodes A and B. Under this configuration,
only interpolation is needed as shown in the leftmost subfigure
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Fig. 13: Shape functions of a simple 1D element.

of Fig. 13. Here, interpolation means A’s weighting function WA
is defined within its nearest boundary condition: WA(B) = 0, and
negative weight should be avoided. When a new node C is inserted
into this 1D element between A and B2, it induces a new boundary
condition: WA(C) = 0. That also means WA need to be extrapolated
beyond its nearest boundary condition in order to allow A to
influence the entire element. If one chooses to design a smooth
shape function, in order to incorporate boundary conditions at B
and C, the lowest-degree polynomial solution is a quadratic curve
with negative values after C (the rightmost subfigure in Fig. 13).
If one chooses to clamp the functions values as the bounded
biharmonic weights (BBW) [50], the weighting function becomes
discontinuous and locking artifacts could occur (mid sugfigure in
Fig. 13). In this case, the element is degenerated to be a linear
one. Without negative weight values, no smooth shape functions
can satisfy both boundary conditions at B and C simultaneous.
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Fig. 14: BBW may induce locking artifacts.

Whether or not we should have negative weighting functions
depends on whether or not the weighting function needs to be
extrapolated beyond its nearest boundary conditions. In many
existing graphics literature, weighting functions are not supposed
to influence areas outside of its neighboring boundary conditions.
As a result, such blending is just interpolation and should be
convex. However, our system is designed for the overlapping
domain decomposition and negative weights become essential.
Fig. 14 gives a 3D example. The beam model has two domains
both covering the entire model. Their seeds are at the 1/4 and 3/4
along the neutral axis of the beam. If BBW is used, weight values
of both domains at nodes right to seed 1 will be 1 and 0. This
leads to locking effect. However, our method does not have such
problem.

2. Doing so actually makes this element nonlinear.

Fullspace Our method

[Barbic and Zhao 2011] [Wu et al. 2015]v

Fig. 15: Simulate a swinging cactus using deformation substruc-
turing [1], unified domain decomposition [2], our method, and the
fullspace solver.

Robust nonlinear expressivity Next, we evaluate the capability
of the proposed simulator capturing large nonlinear deformations.
We compare our method with two paradigmatic state-of-the-art
multi-domain nonlinear simulators using deformation substructur-
ing [1] and coupling elements [2]. As shown in Fig. 15, the cactus
model is decomposed into four domains. The Voronoi segments
(left in the figure) are used for the non-overlapping domain de-
composition for [1] and [2] with 30 modal derivatives per domain.
Therefore all the reduced models have 120 simulation DOFs. From
snapshots reported in the figure and the supplementary video,
we can see that all the simulators produce plausible deformable
animations comparable to the fullspace result.

Fullspace

Our method

[Barbic and Zhao 2011]v

[Wu et al. 2015]

0.4

0.2

Fig. 16: Drag the bunny through a thin funnel (available as the
supplementary executable too).

On the other hand, our method does not require an explicit
domain coupling. This advantage makes our system robust against
large-scale deformations. Figs. 1 and 16 show snapshots of a
challenging scenario: a one-inch-tall bunny model is forced to
pass through a thin funnel. The Young’s modulus of the bunny is
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Fig. 17: Our solver remains stable under severe geometry con-
straints.

500 and the Poisson’s ratio is 0.4. Five domains are used in this
example and all the solvers use 150 simulation DOFs. When the
funnel is relatively wide (i.e. 0.4) as shown in Fig. 16 top, all the
simulators produce plausible and interesting animations. However,
if we reduce the size of the funnel to 0.3, non-overlapping solvers
fail. This is because when domains’ interfaces are highly distorted,
the rigid interface assumption [1] does not hold and the coupling
elements [2] are degenerated. Our method is still able to produce a
similar animation compared with the fullspace simulation (Fig. 1)
and remains stable even the funnel is further shrunk to 0.2 (Fig. 16
bottom).

A more extreme case highlighting the robustness of our solver
is shown in Fig. 17. In this test, we collapse the Armadillo model
into a small 2D disk initially. When this strong geometry constraint
is released, our method quickly restores the model back to the rest
shape with the help of reduced IFE simulation. While the IFE
contributes the calculation of necessary internal forces, the main
reason behind such good numerical stability is the overlapping
domain decomposition. A fullspace IFE [40] simulated animation
is also available in the video for readers’ reference.

Local adaptivity Lastly, we test the adaptivity of our algorithm.
Fig. 18 reports results using our method, local subspace [28]
and the fullspace solver when we push the Stay-Puft with a
spiky board. The Stay-Puft model originally has five domains
and extra two domains are inserted corresponding to the external
collision with spikes. We can see from the figure that, newly-added
domains provide necessary deformable freedoms to simulate local
deformation, and realistic results comparative to the fullspace
ground truth are produced.

Fullspace [Harmon and Zorin 2013]

Our method without local adaption Our method with local adaption

Fig. 18: Adding new domains according to the contacts from a
moving spike board greatly enriches detailed local deformation.

It is noteworthy that similar denting effects can also be ob-
tained by building a local subspace using Boussinesq equation [28]
as shown in Fig. 18. However, our method is able to deal with a
much wider range types of deformation. As shown in Fig. 19, the
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Fig. 19: Runtine domain adaption does not only yield better
denting effects on the bunny, but also enriches local deformations
at the lollipop.

falling bunny hits an elastic lollipop. The local domain insertion
does not only help for a better denting effect on the bunny’s body,
it also enriches the local deformation for the lollipop. Initially,
the bunny has five domains and the lollipop has only one domain
seeded at the middle.

8 LIMITATION AND FUTURE WORK

We present a new spatially reduced deformable simulator us-
ing overlapping quadratic domains. The incorporated high-order
DOFs enhance the expressivity of the reduced model for non-
linear deformations. Besides, we also design an elastic multi-
weight enveloping scheme assigning customized weight functions
for quadratic DOFs. Augmented with the accelerated invertible
finite element method and runtime domain addition, our method
simulates challenging large-scale nonlinear deformations at an
interactive rate.

Our method also has several limitations, which leave us many
interesting research directions for future work. While quadratic
transformations provide plenty of nonlinear freedoms, they could
also inject excessive DOFs for modest deformations. As a result,
placing a lot of quadratic domains (i.e. over hundreds of domains
as in [1]) will quickly drop simulation FPS. A possible solution
is to explore the geometric symmetry/degeneration hidden in the
deformable body to further condense the domain’s DOFs (i.e.
downgrade entries in the geometry matrix to linear DOFs that
are perpendicular to the neutral axis of a beam, where we have
limited nonlinear deformations). Another possible treatment is
to use mixed domains, like affine [10] or rigid [11] domains.
Adding new domains during the simulation runtime alters the
subspace matrix and popping artifacts are possible if the time
step size is aggressive. For instance in [28], the time step is set
conservatively at the order of 1e−4 to 1e−6 to alleviate the issue.
Another limitation lies in the fact that our weight function is
still computed based on the linear elasticity and the rest shape
stiffness matrix. Under large deformations, the weight distribution
is likely to change too. We will look into the possibility of
calculating the spatial weight derivative similar to the modal
derivative [4] to better incorporate such nonlinearity. Augmenting
modal deformations with elastic weighting is also an interesting
future work for us. In order to do so, we need to carefully design
local boundary conditions to construct modal bases and couple
them with local rigid body transformations. Of course, doing so
will induce more freedoms to the simulator putting us back to the
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original question for the reduced simulation: how to find the best
balance between simulation speed and quality?
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multiresolution framework for dynamic deformations,” in Proceedings
of the 2002 ACM SIGGRAPH/Eurographics Symposium on Computer
Animation, ser. SCA ’02. ACM, 2002, pp. 41–47.

[14] E. Grinspun, P. Krysl, and P. Schröder, “Charms: A simple framework
for adaptive simulation,” in Proceedings of the 29th Annual Conference
on Computer Graphics and Interactive Techniques, ser. SIGGRAPH ’02.
ACM, 2002, pp. 281–290.

[15] X. C. Wang and C. Phillips, “Multi-weight enveloping: Least-squares
approximation techniques for skin animation,” ser. SCA ’02, 2002, pp.
129–138.

[16] A. Nealen, M. Müller, R. Keiser, E. Boxerman, and M. Carlson, “Phys-
ically based deformable models in computer graphics,” in Computer
Graphics Forum, vol. 25, no. 4, 2006, pp. 809–836.

[17] E. Sifakis and J. Barbic, “Fem simulation of 3d deformable solids: A
practitioner’s guide to theory, discretization and model reduction,” in
ACM SIGGRAPH 2012 Courses, ser. SIGGRAPH ’12, 2012, pp. 20:1–
20:50.

[18] Y. Zhu, E. Sifakis, J. Teran, and A. Brandt, “An efficient multigrid method
for the simulation of high-resolution elastic solids,” ACM Trans. Graph.,
vol. 29, no. 2, pp. 16:1–16:18, Apr. 2010.

[19] R. Tamstorf, T. Jones, and S. F. McCormick, “Smoothed aggregation
multigrid for cloth simulation,” ACM Trans. Graph., vol. 34,
no. 6, pp. 245:1–245:13, Oct. 2015. [Online]. Available: http:
//doi.acm.org/10.1145/2816795.2818081

[20] F. Hecht, Y. J. Lee, J. R. Shewchuk, and J. F. O’Brien, “Updated sparse
cholesky factors for corotational elastodynamics,” ACM Transactions on
Graphics, vol. 31, no. 5, pp. 123:1–13, Oct. 2012.

[21] M. Fratarcangeli, V. Tibaldo, and F. Pellacini, “Vivace: a practical gauss-
seidel method for stable soft body dynamics,” ACM Transactions on
Graphics (TOG), vol. 35, no. 6, p. 214, 2016.

[22] H. Wang and Y. Yang, “Descent methods for elastic body simulation on
the gpu,” ACM Transactions on Graphics (TOG), vol. 35, no. 6, p. 212,
2016.

[23] K. K. Hauser, C. Shen, and J. F. O’Brien, “Interactive deformation using
modal analysis with constraints,” in Graphics Interface, Jun. 2003, pp.
247–256.

[24] M. G. Choi and H.-S. Ko, “Modal warping: Real-time simulation of
large rotational deformation and manipulation,” IEEE Transactions on
Visualization and Computer Graphics, vol. 11, no. 1, pp. 91–101, Jan.
2005.

[25] T. Kim and D. L. James, “Skipping steps in deformable simulation with
online model reduction,” ACM Trans. Graph., vol. 28, no. 5, pp. 123:1–
123:9, Dec. 2009.

[26] Y. Yang, W. Xu, X. Guo, K. Zhou, and B. Guo, “Boundary-aware mul-
tidomain subspace deformation,” Visualization and Computer Graphics,
IEEE Transactions on, vol. 19, no. 10, pp. 1633–1645, 2013.
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