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Abstract—1In this paper, a deep learning (DL) framework was
proposed to predict the taxi-passenger demand while the spatial,
the temporal, and external dependencies were considered simul-
taneously. The proposed DL framework combined a modified
density-based spatial clustering algorithm with noise (DBSCAN)
and a conditional generative adversarial network (CGAN) model.
More specifically, the modified DBSCAN model was applied to
produce a number of sub-networks considering the spatial corre-
lation of taxi pick-up events in the road network. And the CGAN
model, fed with the historical taxi passenger demand and other
conditional information, was capable to predict the taxi-passenger
demands. The proposed CGAN model was made up with two long
short-term memory (LSTM) neural networks, which are termed
as the generative network G and the discriminative network D,
respectively. Adversarial training process was conducted to the
two LSTMs. In the numerical experiment, different model layouts
were compared. It was found that different network layouts
provided reasonable accuracy. With limited training data, more
LSTM layers in the generator network resulted in not only higher
accuracy, but also more difficulties in training. Comparisons
were also conducted between the proposed prediction model and
four typical approaches, including the moving average method,
the autoregressive integrated moving method, the neural network
model, and the LSTM neural network model. The comparison
results showed that the proposed model outperformed all the
other methods. And the repeated experiment indicated that the
proposed CGAN model provided significant better predictions
than the LSTM model did. Future research was recommended to
include more datasets for testing the model and more information
for improving predictive performance.
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I. INTRODUCTION

RADITIONALLY, taxi plays an important role in urban

transportation systems. Different from other public trans-
port modes, the taxi provides flexible door-to-door service
and 24-7 operations [36]. However, with the boom of the
mobile Internet, the taxi is slowly losing its market share
to various on-demand ride services, such as tailored taxis
and lift-sharing cars [5]. By the end of 2015, the number of
taxis in Beijing increased by 1.09%, and up to 68,284, while
the daily trips were reduced from 1,311,671 to 1,149,726,
compared to 2014 [27]. Difference between the traditional and
the on-demand services is mainly located on the field of a
user’s hailing experience. Taxi-passengers had to stand along
the road and wait a long time for a taxi, especially during peak
hours. It was hard for traditional taxi to handle the random
taxi-passenger demands.

A critical challenge for not only the traditional taxi industry
but also the on-demand service industry, however, is how to
meet the demand with a finite supply. It is realized that having
a better understanding of the time-varying taxi-passenger
demand over different spatial zones is of great importance
to the operator, who can incentivize drivers to be in zones
with more potential passenger demands and thus improve the
utilization rate of the taxi vehicles [12]. Numerous studies have
been conducted to explore the relationship between passenger
demands and various causal factors [11], [20], [26], [33], [34].
However, the prediction of taxi-passenger demand is still an
open issue and a great challenge mainly affected by three types
of dependencies [12], [37]:

o Spatial dependencies: passenger demand was not only
determined by variables of current spatial units, but
also dependent on the variables from the whole area.
As revealed in [35], the variables of nearby spatial units
made greater impacts than the distant unit;

o Temporal dependencies: on one hand, just like many
other traffic variables, passenger demand varied period-
ically 25]; on the other hand, time-varying passenger
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demand was affected by the past passenger demand in
the area.

« External dependencies: external factors, such as weather
conditions and traffic regulations, might strongly affect
the passenger demand both spatially and temporally.

Recent advances in sensor and wireless communications,
such as global positioning system (GPS) and Wi-Fi, have
provided a new way to determine vehicle status and location
accurately. Most taxi vehicles are now equipped with these
types of facilities, producing a source of rich spatial-temporal
information. In this paper, the taxi pick-up information was
employed in a deep learning (DL) framework, namely a
conditional generative adversarial network (CGAN) model,
to predict taxi-passenger demand while considering the three
dependencies simultaneously. Different from most existing
studies, the proposed DL framework focused on mining the
spatial-temporal correlation of taxi pick-up events and produc-
ing conditional taxi-passenger demand predictions. The main
contributions of this paper were concluded as follows:

« The modified density-based spatial clustering algorithm
with noise (DBSCAN) algorithm was capable to capture
the spatial dependencies among raw taxi pickup informa-
tion considering traffic road network;

o Long short-term memory (LSTM) structure was used in
the proposed CGAN model, which enabled the CGAN
model to capture temporal patterns naturally;

o The conditional information is considered in terms of the
historical demand information, the temporal information,
and the road network information. And the proposed
CGAN model is capable of making predictions for
time-varying taxi-passenger demand with the conditional
information;

o The proposed prediction framework was evaluated using
two sets of field data collected in different urban traffic
networks. In the numerical experiment, the proposed
model outperformed other approaches.

The remainder of the article was structured as follows.
After this brief introduction, Section II presented a back-
ground review on taxi-passenger demand prediction methods.
In Section III, introduction for the modified DBSCAN method
and the CGAN model was provided. The prediction framework
for taxi demand prediction was then presented in section IV.
Section V described the predictive performance of the pro-
posed framework in numerical cases. At the end, we concluded
the paper with discussions on future research in Section VI.

II. BACKGROUND REVIEW

Over the past decades, taxi-passenger demand prediction has
attracted the attention of both researchers and companies due
to the revolution caused by various taxi-like vehicle servers.
Methods of predicting taxi-passenger demand could generally
be classified as the classical statistical methods, including
those based on causal analysis, the time-series analysis, and
the DL methods.

Causal analysis related to taxi-passenger demand prediction
includes regression analysis methods and equilibrium model
methods [28]. Regression analysis methods usually estimate
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taxi-passenger demand through the causal relationships among
two or more variables [1], [3], [11], [20]. A list of prin-
cipal variables and parameters considered in the taxi mod-
els was summarized in [29]. The principal assumption in
these regression analysis methods is the underlying relation-
ship between the passenger demand and the causal factors.
Independent sample data is commonly required. Accordingly,
the spatial-temporal correlation could not be well handled in
those regression analysis models. Equilibrium models tend
to explore the demand-supply relationship in the taxi market
by assuming a spatial homogeneous or heterogeneous distri-
bution [12], [16], [32]-[35]. However, as indicated in [22],
a regional disequilibrium might occur if there exists an excess
in waiting passengers in that region, which leads to an
imbalanced supply-demand status. Time-series analyses use
trends in past observations to forecast future value. Typical
time-series methods include moving average (MA) methods,
autoregressive integrative moving average (ARIMA) meth-
ods [10], and hybrid methods. For instance, [23] proposed
a streaming data based sliding-window ensemble framework
for taxi-passenger demand prediction. Moreover, three types
of time-series models, i.e., the time-varying Poisson model,
the weighted time-varying Poisson model, and the ARIMA
model, were combined to form a prediction.

Recently, more and more DL approaches have been applied
in the field of traffic prediction because they are capable
of capturing complex relationships from a huge amount of
data [4], [9], [12], [18], [31] proposed two-level architec-
ture, which consisted of a deep belief network at the bot-
tom and a multi-task regression layer at the top, for traffic
flow prediction. Reference [18] proposed deep-learning based
traffic flow prediction model, i.e., the stacked autoencoder
method. Reference [15] described a two-step generative mod-
eling framework, which was capable of learning an activity
sequence from a large volume of cell phone data. In order
to capture the spatial-temporal correlation, [36] proposed a
DL-based approach to predict the pedestrian volume in each
region of a city collectively. By fusing the convolutional
neural network (CNN) and LSTM techniques, [12] formu-
lated a DL approach to forecast the short-term taxi-passenger
demand. Reference [14] extended the original generative
adversarial networks (GAN) proposed by [7] to a two-level
LSTM neural networks, which was capable to capture the
spatial-temporal correlation of network-wide traffic statement
estimation.

Inspired by [14], in the proposed prediction framework,
the authors combined the modified DBSCAN method and the
CGAN model for taxi-passenger demand prediction. Different
from previous attempts, such as the CNN models, the recurrent
neural network (RNN) models and the GAN model, in this
study, the CGAN model applied a conditional adversarial
architecture,i.e., a conditional generative network G and a con-
ditional discriminative network D [17], [21]. The conditional
term formulated the external dependences. By applying the
modified DBSCAN in data processing, adversarial training
process in CGAN model helped conditional generator G to
capture the spatial, the temporal, and the external dependences
of taxi demand simultaneously.
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TABLE I
DESCRIPTIONS OF NOTATIONS

Notation DEFINITION

Type

Constant K number of sub-networks/clusters
T number of time-steps

J number of types of interest points
Variable Ju(k,t) taxi-passenger demand for spatial-temporal unit
(k1)
Sfilk,t) link length for spatial-temporal unit (£,7)
fi(k,t) number of interest point type j for
spatial-temporal unit (k,?)
fdk,t) time-period type for spatial-temporal unit (k)
CGAN G generator in CGAN
Parameter D discriminator in CGAN
X real data
y conditional information
z randomly generated sample
p-(2) prior noise distribution
Pata(X) underlying real data distribution
fe forget gate operator at time-step ¢
o output gate operator at time-step ¢
i input gate operator at time-step ¢
¢ memory cell vector at time-step ¢
lg loss value for generator G
Ip loss value for discriminator D
DBSCAN ¢ neighborhood radius
Parameter  mi, minimum required data objects number
Cy kth cluster in output results
H set of all the data objects
Di attribute vector for ith taxi-passenger pick-up
data object
i, p)) target distance between data object i and j
N.(p) set of data objects within ¢ from data object i
IN(p))| number of data objects within ¢ from data object i

III. PRELIMINARIES

In this section, after defining the problem setting for this
paper, we introduced the conditional generative adversarial
network [21], and the modified DBSCAN algorithm applied
to the traffic road network [2], [6]. For convenience, notations
used in this paper were summarized in TABLE 1.

Definition 1 (spatial-temporal unit): urban traffic network
is clustered into K sub-networks with the DBSCAN algo-
rithm. Moreover, taxi pick-up data, seen as representative of
taxi-passenger demand, is aggregated in pre-determined time
intervals. And kth connected sub-network in fth time interval
is termed as the spatial-temporal unit (k,z).

In preparing the training and testing data set, we further
defined the following variables for each spatial-temporal unit.

o Taxi-passenger demand f;(k,t)
In this study, taxi-passenger pick-up events which occur
in sub-network k during time-step ¢ are identified as
the taxi-passenger demand for spatial-temporal unit (k,z).
Furthermore, f;(k,t) represents the number of taxi-
passenger pick-up events.

o Link length f;(k,t)
Link length for spatial-temporal unit (k,r) is defined as
the total length of efficient road links within spatial unit .
In most cases, f;(k,t) keeps stable among neighboring
time intervals. However, real-time traffic regulations may
change the availability of links, which modifies link
length. In this study, the link length is static information.
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« Point of interest {fi/ (k,t)}
Point of interest for spatial-temporal unit (k,t) consists of
various types of interest points within the spatial unit &.
Let J be the total number of interest point types, and
fil (k,t) is the number of jth of interest point types.
It is noted that {fi/(k,r)} varies according to hours of
operation.

o Type of time f;(k,t)
Discrete time-steps are empirically grouped into three
types of time periods, i.e., the peak time, off-peak time,
and the sleeping time. More specifically, hourly taxi-
passenger pick-up counts are ranked from high to low.
The first 8 hours are considered peak time. The next
8 hours are off-peak time, and the remaining hours are
sleeping time. Then type of time variable f;(k,t) is given
as below:

0 peak time
fi(k,t) = 11 off-peak time (D
2 sleeping time
Similar approach has also been applied in [12].

In addition, as a common procedure, before training and
validating the proposed model, the authors normalized all the
variables to [—1, 1] range as below:
2fi (k1) — fmn — f

O (k1) = fmin

foe{fa fio 1 11)
@

where f"® and f,™" refer to the maximum and minimum f;

variable in all the spatial-temporal units.

max __
*

A. Conditional Generative Adverse Networks

Introduced as a novel way to train generative models,
GAN has been one of the pioneering deep learning tech-
nologies [17]. In the adversarial architecture, the generative
network G captures the data distribution, and the discrim-
inative network D estimates the probability that a sample
came from the training data rather than G. When both the
generator G and the discriminator D are conditioned on some
extra information y, the original GAN could be extended to
the CGAN model. Here the extra information can be any
kind of auxiliary information, such as class labels in image
recognition, feature labels in spatial-temporal taxi pick-up
data, or data from other modalities. Conditional information y
can be fed into both the discriminator D and generator G as
an additional input component [21].

As illustrated in Fig.1, to learn a generator distribution pgq:q
over data x, the generator G builds a mapping function from
a prior noise distribution p;(z) and conditional information
y to data space as G(z|y). Additionally, the discriminator
D outputs a scalar D(x|y), which represents the probability
that data xcomes from real data but not the generator G.
Simultaneously training process is applied to G and D. The
parameters in generator G are adjusted to fool the discrimina-
tor D, i.e., to minimize log(1-D(G(z|y)|y)); and parameters
in discriminator D are adjusted to maximize the probability
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Fig. 1. Typical CGAN architecture used in the proposed structure.

of correct label to both training data and samples from G,
i.e., to maximize log(D(x|y)). In other words, D and G play
the following two-player minimax game with value function
V(G,D):

minmax V (D, G)
G D

= Ex~pdam(x) [IOg D (xlyx)]

+E;~p.(2) [10g (I =D (G (zlyy) |yz))] 3)

B. Modified DBSCAN Algorithm

The density-based spatial clustering algorithm with
noise (DBSCAN) is one of the most popular clustering algo-
rithms over the past decades. Compared to other well-known
clustering algorithms, DBSCAN is able to discover clus-
ters with arbitrary shapes with minimal domain knowledge
required to determine the input parameters [6]. In this study,
a modified DBSCAN algorithm was used to capture the spatial
correlation in taxi-passenger demand.

Generally speaking, the modified DBSCAN is applied
to divide a traffic network into a number of sub-networks
according to density-based spatial correlations. Let p
{p1, ..., pm} be the dataset containing m data objects, each of
which is described by an attribute vector, p;. In addition, let L
be (conceptually only) an m x m matrix containing the targeted
distance /(p;, p;) between pairs of objects of x in a metric
space. In our modified DBSCAN, the matrix Lis obtained by
calculating the length of the shortest route for any pair of
objects. Similar to the original DBSCAN, two important input
parameters in the algorithm are the neighborhood radius ¢ and
minimum required data objects number m . In the following,
we redefined the parameters in a way that made the algorithm
more consistent with the proposed DBSCAN method.

Definition 2 (Core, Border and Noise Objects): An object
pi is determined as a core object w.r.t. & and mps if its
¢-neighborhood contains at least m,, objects, that is, if
INe(pi)| = mps, where Ne(pi) = {p; € pll(p;, pi) < ¢}
and | - | is the cardinality. An object p; is determined as
a border object w.rt. & and mp, if: (1) p; € Ng(pi); (2)
INe(pi)l = mps; and (3) [N(pj)| < mps. An object p; is
determined as a noise object if it is not a core object or a
border object.

Definition 3 (e- reachable): Two objects p; and p; are
g-reachable w.r.t. € and m s if p; € N:(p;) and p; € N(p;).
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Fig. 2. Framework overview for taxi passenger demand prediction.

Definition 4 (&- connected): Two core objects p; and p; are
g-connected w.r.t. ¢ and m s if N;(p;) N N:(p;) is non-empty.

Definition 5 ( Cluster): A cluster Cy w.r.t. & and mpy is a
non-empty maximal subset such that for any core object p;
in C there exists at least one &-connected core object p; in C,
and for any border object p; in C there exists at least one
g-reachable core object p; in C.

By calculating the distance matrix, we focused on the
spatial correlation via the road network, which was beyond
the real network accessibility. In other words, we ignored
most of the traffic regulations, such as one-way links and
detour signs, which might result in a difference between
I(pi, pj) and I(pj, pi). Accordingly, the new definitions
imply that the modified DBSCAN is formed based on a
symmetric notion of reachability. The clustering algorithm
for the original DBSCAN is still suitable for this traffic
network-based version, except that the distance in the modified
DBSCAN is the length of the shortest path connecting the two
object events in the traffic network.

IV. DEEP LEARNING FRAMEWORK FOR TAXI-
PASSENGER DEMAND PREDICTION

In this section, we presented an explicit description of
our prediction framework, including data processing using
modified DBSCAN algorithm, the architecture of proposed
CGAN, and training and prediction procedure. A flow chart for
the proposed prediction framework was illustrated in Fig. 2.

A. Data Processing

The raw data includes taxi GPS data, taximeter data, and
the road network information. The taxi GPS record has the
following attributes: vehicle identification (ID), time, location,
speed; and the taximeter record had vehicle ID, pick-up time,
and drop-off time. Note that actual vehicle identification,
such as the Vehicle Identification Number or license plate
number, is not necessary. The vehicle ID here was employed
to match data record and to obtain the taxi pickup location.
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Fig. 3.  Path-based linear interpolation located the pick-up event using

two steps: firstly, calculate the shortest path between the two GPS records
associated with a pick-up time record; secondly, locate the pick-up event on
the path linearly according to the time ratio.

Data masking can be applied to protect privacy information
and does not make any difference. Combining the taxi GPS
record and taximeter record, we located the pick-up event onto
the road network through a path-based linear interpolation.
Fig. 3 explained the path-based linear interpolation.

Each pick-up location was processed as a data object. Then
we applied the modified DBSCAN algorithm to all the taxi
pick-up records. Considering the large amount of pick-up
objects, two approaches were jointly applied to eliminate
most objects, which reduced computation significantly. Firstly,
any object pairs with large difference, i.e., 0.0015 degree,
in longitude or latitude were rejected without calculating the
actual distance. It was noted that a 0.0015-degree difference
in studying area indicated a field distance more than 150m.
Secondly, a novel shortest path calculation process was applied
to simplify the distance computation. Instead of calculating
the shortest path for every object pair, a shortest path matrix
connecting the intersections was prepared. Distances between
an arbitrary object and its neighboring intersections were
calculated using Euclidean distance. The shortest path connect-
ing the two objects was the minimal summation of distance
between the taxi object and the intersection, and the shortest
path between the two corresponding intersections, which can
be obtained from the prepared path matrix.

Density-based pick-up clusters were then labeled to each
pick-up record. Furthermore, the same label was also assigned
to the corresponding road segment units. Road segment units
with the same cluster number formed a sub-network. Let K
be the total number of sub-networks. Accordingly, the whole
road network was divided into K sub-networks. All the data,
including the taxi GPS records, and the road network informa-
tion, was divided into two parts, i.e., the testing and training
datasets, w.r.t., the K sub-networks and the pre-specified time
intervals (10 minutes in this study). Moreover, for an arbitrary
time interval ¢, taxi pick-up count and link length were all
K-element vectors; the point of interest was actually a J x K
matrix; and time of day was one-element vector considering
the factor.

B. Proposed CGAN Architecture

Note that the two neural networks, i.e., generator G and
discriminator D, could be formulated in any type. In this study,
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Fig. 4. Tllustration of the principle of LSTM cell.

in order to capture the temporal dependencies naturally, two
LSTM neural networks were utilized in the proposed CGAN
architecture.

LSTM neural networks, introduced as a special RNN archi-
tecture [8], are beneficial for dealing with long-term memory
in temporal issues [19]. A LSTM cell maps the input vector
sequence {x, yy}; to an output vector sequence h; by Ty
iterations. Fig. 4 depicted the principle of LSTM cell.

The LSTM cell was composed of an input layer, a memory
block layer, and an output layer. The memory block contained
three types of gating units to control information flow, includ-
ing the forget gate f;, input gate i;, and output gate o,. And
let ¢;, ¢; be the memory cell vector and the candidate value,
respectively. All the information was updated as follows:

fi =0 (Wr Rt {x, el ] + by) )
ir = o (Wi [hi-1, {x, yi) ] + i) ©)
¢; = tanh (WC [hz—l, {x, yx}t] + bc) (6)
¢t = frkci—1 i x¢ )
o =0 (Wo [ht—b {x, yx}t] + bo) ®)
h; = oy * tanh (¢;) ©)

where function o () was the standard logistics sigmoid func-
tion defined as follows:

1
1+ exp (—x)
Additionally, function tanh(.) indicated the standard hyperbolic
tangent function defined as follows:

exp (x) —exp (—x)
exp (x) + exp (—x)
Based on LSTM cells, a sample layout for both the
generator G and discriminator D was presented in Fig. 5.
The generator G had three layers, which were one random
generation layer and two LSTM layers. The discriminator D
had three layers, which were two LSTM layers and one
full connected layer. The LSTM layers consisted of multiple
LSTM cells described before. In this study, the number of
LSTM cells in a single layer was 256. Models with different
numbers of LSTM layers in generator G or discrimina-
tor D were also tested and presented in the experimental
results.
We designed the input of the discriminator D such
that it contained a sequence of taxi-passenger demand
x; = {04(k, 1)} for each sub-network and the corresponding

o(x)= (10)

tanh (x) = (1)
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Fig. 5. Layout for the proposed CGAN.

conditional information y,, with multiple time-steps. In this
study, the time-step for look-back time window equaled 6.
In conditional information, we included the link length, the
point of interest information, type of time, and the taxi-
passenger demand in previous time step, i.e., yy; is represented
as below:

Yoy = {91 (k.0 {0 00} 00 Gy 00 ot - 1)] (12)
k

With the input information, the output of each LSTM cell
in each time-step was a list of value between -1 and 1.
The full connected layer together with the softmax function
mapped the output of the second LSTM layer to a value
between 0 and 1, representing the probability that the input
taxi-passenger demand was field-collected data. As for the
generator G, in the generation layer, a sequence randomly
samples were generated from a uniform distribution scaled
between -1 and 1. The size of the random generated sample
was just the same as vector {x;}. In addition, the uniform
distributed random samples, together with the corresponding
conditional information, were imported into the two LSTM
layers to generate the predictions of taxi-passenger demand.
The generative ability of generator G was improved in the
adversarial training.

C. Training and Predicting Procedure

The training procedure for the conditional generator G and
the conditional discriminator D was illustrated in Fig. 6. It was
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noted that D and G played a minimax game with a value
function defined in EQ (3). Instead of minimizing likelihood
of discriminator being correct for generator G, it worked much
better to maximize the probability of the discriminator making
the incorrect choice [7], [30]. Accordingly, in updating the
generator G and discriminator D, we minimized the following
loss functions for G and D, respectively.

IG = Ez~p.(z) [log D (G (z]y) Iy2)] (13)
Ip = Ehwpdata(h) [log D (h |yh )]
+ Ecp.(o) [log(1 =D (G (zlyz) ly-))]  (14)

As shown in Fig. 6, training process started from sampling
mini-batch of examples from database. In this study the batch
size was set to 36 as a tradeoff between training time per epoch
and quality of model, as well as the required memory size [13].
Each example in the mini-batch consisted of field-collected
taxi pick-up set {x;} and conditional information set {y;}. The
discriminator D was pre-trained using the two sets with an
un-trained generator G for certain iterations. The pre-training
process only updated the parameters in discriminator D fol-
lowing EQ(14). Then the conditional information {y;} was
imported to both the generator G and discriminator D, while
{x;} was processed to discriminator. The generator G and
discriminator D were updated simultaneously. If the pre-
specified maximum iteration was not satisfied, parameters in
G and D were updated following EQ (13) and EQ (14);
otherwise, stop training.

To prevent overfitting, we further applied the dropout
method with probability of 0.6 at each LSTM layer. The num-
ber of training epochs was set to 400. It should be noted that
convergence on training dataset and prediction performance on
testing dataset were different. In this study, we focused on the
prediction performance, and we simply trained the model as
long as necessary, which ensured the CGAN model captured
all the possible spatial-temporal patterns hiding in the training
dataset.

After the CGAN was well trained, taxi-passenger demands
were generated by the generator G with corresponding con-
ditional information. The predicted taxi pick-up counts were
then obtained by applying the following decoding function to
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the model outputs of the latest time-step:

Oq (k, t N1 .

fa k, t)=% (- 5“‘“)+5 (S ) as)
It was noted that multiple samples were generated and accord-
ingly, multiple demand predictions were calculated. The aver-
age value of the multiple demand predictions was used as the
predicted taxi-passenger demand.

V. EXPERIMENTAL RESULTS

This section evaluated the CGAN based taxi-passenger
demand prediction model using field collected taxi-passenger
pickup data. A two-week data collected in Beijing, China was
applied in evaluation tests with different model layouts and
performance comparison. And a two-year data collected in
New York city was then applied to further validate transfer-
ability of the comparison results with larger area and longer
duration.

A. Data Description

The studying area locates in downtown Beijing, China,
located from 116.09° E to 116.39° E in longitude, and from
39.93° N to 40.23° N in latitude. The taxi GPS data set
and taximeter data set used in this paper was provided by
Beijing taxi companies. The number of referred taxis was
68,310, and the total number of pickup records in studying area
was 1,750,198. As reported in annual city report of Beijing,
the total number of operating taxis was around 68,000, which
indicated the fact that the authors obtained almost the accessi-
ble taxi data during the studying period. The corresponding
traffic network data was collected from Open Street Map,
while the POI information was provided by Baidu Map.

The GPS data was generated over a period of two weeks
(from Nov. 1%, 2015 to Nov. 14™, 2015). More specifically,
data from Nov. 1% to Nov. 12" was used as the training dataset
and the left two days were used for testing. Within the training
dataset, the first 11-day data was used for training, while 12th
day’s data was used for validation. It should be noticed that a
two-week dataset was not large enough to cover various traffic
patterns/situations, such as traffic accidents, weekend mobility
patterns, or adverse weather conditions. The small data case
mainly focused on validating the performance of the proposed
prediction framework.

The spatial distributions for various POIs and taxi-passenger
demand were illustrated in Fig. 7. In each sub-figure, the
shade of color represented the density of different parameters.
Moreover, Fig. 8 depicted time-varying taxi-passenger demand
throughout a whole day. It was observed that the peak hours for
taxi-passenger demand occur in two periods, from 8:00 am to
14:00 pm and 16:00 pm to 18:00 pm. This finding was slightly
different from the peak-hours of urban traffic volume, which
usually occurred during commuting time, i.e., from 7:00 am
to 10:00 am and from 16:30 pm to 19:30 pm. According to
field-collected data, the sleeping time is from 23:00 pm to
7:00 am and the remaining time is considered off-peak time.

In order to apply the modified DBSCAN algorithm,
the neighborhood radius ¢ was set as 100 m, and the min-
imum required data objects number m,; was set as 80 to
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Fig. 8. Taxi-passenger demands vary with time.

balance the taxi-passenger demand among different clusters.
It was clear that the value of the two parameters affected the
clustering result significantly, and influences the prediction
performance eventually. Here, the parameters were roughly
determined according to their physical meanings. More specif-
ically, by applying the 100m neighborhood radius, it was
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Fig. 9. Cluster result of the taxi-passenger demand according to the DBSCAN
algorithm.

assumed that the radius of taxi-passenger searching behavior
was 100 m. It would be of great interesting to exploring
the impacts of those parameters on the demand prediction
performance in future study.

By applying the modified DBSCAN algorithm to taxi
pick-up data, we obtained 159 taxi-passenger demand clusters,
as shown in Fig. 9. Since the shortest route information was
considered, it was noted that objects were clustered following
the road network design, but not the crow-fly distance. Most of
the clusters were single or continuous intersections, as shown
in Fig. 9 (I) and (II), which was definitely reasonable. Based
on the cluster results, 916,025 taxi-passenger pick-up records,
which comprised 52.34% of all the demand, entered the
159 clusters, which took only 3.90% of the whole network
length.

B. Performance Evaluation for CGAN Based
Taxi Demand Prediction

Three performance indexes were used in this study, includ-
ing the mean squared error (MSE), the mean absolute error
(MAE), and the mean absolute percentage error (MAPE). They
were calculated as follows:

RMSE = L Z Z (5p (k, 1) —cp (k, t))2 (16)
r keK teT
1 o
MAE = ﬁzzycp (k,t) —cp (k,1)] (17)
keK teT
MAPE = —— ZZ € ®,1) — ¢p () (18)
keKteT (k t)

where MSE and MAE were applied to all the test dataset, and
MAPE was applied to the spatial-temporal unit with the top
5% of taxi-passenger demand. In Beijing dataset, the top 5%
of spatiotemporal units referred to units with no less than
11 pick-up records.

Considering the pre-specified batch size of 36 and epoch
size of 400, it was 44 iterations per epoch, and 17600 iterations
in total. Validation test results with different model layouts,
i.e., well trained CGAN models with different numbers of
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TABLE 11
TEST RESULTS WITH DIFFERENT MODEL LAYOUTS

NUMBER OF LSTM LAYERSIN G

1 2 3
MSE: 1.257 MSE: 1.110 MSE: 1.064
1 MAE: 0.772 MAE: 0.697 MAE: 0.695
NUMBER OF MAPE": 0.152  MAPE* 0.131 MAPE" 0.131
LSTM MSE: 1.130 MSE: 0.977 MSE: 1.003
LAYERS IN D 2 MAE: 0.728 MAE: 0.628 MAE: 0.657
MAPE": 0.150 MAPE": 0.130 MAPE* 0.132
MSE: 1.112 MSE: 1.006 MSE: 1.010
3 MAE: 0.708 MAE: 0.642 MAE: 0.688
MAPE": 0.143  MAPE": 0.132 MAPE" 0.132

*MAPE INDEX WAS APPLIED TO THE SPATIAL-TEMPORAL UNIT WITH MORE
THAN ELEVEN PICK-UP RECORDS.
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Fig. 10. Taxi demand prediction results in three sub-networks using CGAN
model.

LSTM layer, were listed in TABLE II. It was clear that with the
increasing LSTM layers in G, the CGAN prediction models
presented better performance. Moreover, it was found that with
only one LSTM layer in G, the CGAN models performed
worse than the others. When the numbers of LSTM layer in
G were two or three, the performance difference among these
models were much closer. This phenomenon may be the result
of limited data. It would be more difficult to train a deeper
model well. On the other hand, the test result also showed that
the impact of LSTM layer number in D is a little complex.
When the LSTM layer number in D increased from one to two,
models performed better in all of the three indexes. But when
the LSTM layer number in D increased from two to three,
the models provide a little better or similar performance in
some indexes, but worse performance in the others. The two
possible explanations were: firstly, as mentioned, the limited
data made it harder to train a deeper model well; secondly,
more LSTM layers in D resulted in the prematurity of the
Adam Optimizer applied in this study.

Fig. 10 plotted the predicted results for three random
selected clusters (sub-networks) with two LSTM layers in
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both G and D. It showed that the proposed CGAN model
provided reasonably accurate forecasts of the taxi-passenger
demand. In general, the proposed model had higher prediction
errors for greater taxi demand and sudden-drop situations,
as shown in the red rectangle marks. Except for the limitation
on dataset size, the limited conditional information involved
in this study made it difficult to capture those atypical condi-
tions. Future research would involve additional information,
including the real-time traffic volume, weather conditions,
and possible traffic events, to predict those outliers more
accurately.

C. Model Comparisons

The well-trained model was compared with six other predic-
tion methods, including the moving average (MA) method, the
autoregressive integrated moving average (ARIMA) method,
the neural network (NN) model, the convolutional neural
network (CNN) model, the LSTM neural network, and the
CNN-LSTM model. They were briefly described as follows:

(1) MA: the MA method has been widely used in time-series
analysis, which calculates predictions using the mean value
of nearest historical records. In this study, the time window
equaled three time-steps, i.e., the taxi-passenger counts in the
spatial-temporal unit (k,z-3), (k,t-2), and (k,t-1) were used
to predict the taxi-passenger counts in the spatial-temporal
unit (k,z).

(2) ARIMA: the ARIMA model was introduced by Box and
Jenkins (1976) [38]. In an ARIMA (p, d, g) model,
the parameter p and ¢ are integers and referred to as the
orders of the autoregressive term and moving average term.
The parameter d represents the dth order difference from
the original data series, which aims to remove the trend
from the data series. In this study, parameters were opti-
mized using the auto-optimal function in forecast package
with R-3.4.4.

(3) NN: the NN model [24] applied in this study involved
two hidden layer with 256 hidden units and one full connected
layer. It was fitted with multiple random starting weights. The
conditional information {y;} was used as an input and the
output was the scaled taxi-passenger pick-up f,(k,t) for each
spatial-temporal unit (k,t).

(4) CNN: the CNN model applied in this study employed
two one-dimension convolutional layers and a full connection
layer. The conditional information {y;} was imported as a
picture with one-dimension and one channel.

(5) LSTM: the LSTM neural network was also applied
for taxi demand prediction. The LSTM model evaluated here
captured the same structure as the generative network G in
the proposed CGAN model, i.e., two LSTM layers and one
full connected layer. More specifically, conditional information
{y:} was used as an input considering 6 time-steps for
look-back time window, while the output was the scaled
taxi-passenger pick-ups.

(6) CNN-LSTM: a CNN-LSTM model is an integration of
a CNN part and an LSTM part, which captures the spatial
and temporal dependencies simultaneously. The CNN-LSTM
model employed here consist of one CNN layer, one LSTM
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TABLE III

COMPARISON RESULTS AMONG CGAN MODEL
AND OTHER TYPICAL MODELS

MODEL MSE MAE MAPE*
MIN 0.539 0.350 0.000
MAX 7.136 5.075 0.803
MA MEAN 1.811 1.348 0.146
STD. 1.058 0.783 0.238
TOTAL® 2.096 1.348 0316
MIN 0.514 0.405 0.000
MAX 7.629 5.283 0.846
ARIMA MEAN 1.530 1.336 0.149
STD. 1.153 0.800 0.251
TOTAL® 1.736 1.336 0.306
MIN 0.329 0.265 0.000
MAX 5.353 3.846 0.583
NN MEAN 1.511 1.146 0.097
STD. 0.785 0.589 0.177
TOTAL® 1.701 1.146 0.173
MIN 0.346 0.294 0.000
MAX 4.777 3314 0.564
CNN MEAN 1.343 0.969 0.091
STD. 0.542 0.675 0.126
TOTAL® 1.448 0.969 0.157
MIN 0.288 0.196 0.000
MAXx 3.449 2.208 0.443
LSTM MEAN 1.068 0.680 0.076
STD 0.427 0.329 0.126
TOTAL® 1.130 0.680 0.151
MIN 0.176 0.196 0
MAX 3.551 2.321 0.636
CNN-LSTM MEAN 1.002 0.678 0.75
STD 0.546 0.398 0.131
TOTAL" 1.072 0.678 0.149
MIN 0.259 0.193 0.000
MAX 3.157 2413 0.405
CGAN MEAN 0.877 0.655 0.069
STD 0.524 0.391 0.115
TOTAL® 0.945 0.655 0.138

*MAPE INDEX WAS APPLIED TO THE SPATIAL-TEMPORAL UNIT WITH MORE
THAN ELEVEN PICK-UP RECORDS.

"HERE TOTAL MEANS THAT THE INDEX WAS APPLIED TO ALL THE
SUB-NETWORKS.

layer and a full connection layer. The look-back time window
is set to 6. Conditional information {y;} of the 6 time-steps
was imported to the CNN layer and then the LSTM layer. The
output was the scaled taxi-passenger pick-ups in the following
time-step.

It should be noted that here the MA, and the ARIMA were
calibrated for each single subnetwork and the predictions for
each subnetwork were obtained separately, while the rest mod-
els were applied to the whole network. TABLE III presented
the comparison results of the proposed CGAN model, as well
as the MA, the ARIMA, the NN, the CNN, the LSTM, and the
CNN-LSTM approaches. Note that, here the CGAN prediction
model referred the CGAN layout with two LSTM layers in
both G and D. As shown in TABLE III, each index was
calculated for each sub-network, respectively. It was found
that the proposed CGAN model outperformed the six typical
approaches in all the three performance indexes, as expected,
followed by the CNN-LSTM, the LSTM, the CNN, the NN,
the ARIMA, and the MA.

It was of interest to take a further look at the five neural
network-based models. Compared to the basic NN model,
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TABLE IV
RESULTS OF TRANSFERABILITY TEST

MODEL MSE MAE MAPE*
MIN 2.294 0.615 0.000
MAXx 58.612 23.329 2.843
MA MEAN 16.653 6.541 0.211
STD. 7.034 2.383 0.202
TOTAL® 17.955 6.541 0.220
MIN 2.234 1.102 0.000
Max 56.232 24.432 2.258
ARIMA MEAN 15.645 6.133 0.210
STD. 11.790 3.184 0.203
TOTAL® 17.425 6.133 0.219
MIN 2.976 1.309 0.000
MAX 58.487 26.541 2.227
NN MEAN 15.426 6.089 0.213
STD. 7.676 3.030 0.201
TOTAL® 17.230 6.089 0.230
MIN 2.637 1.259 0.000
MAX 45.861 17.131 2.351
CNN MEAN 15.210 6.067 0.204
STD. 7.689 3.045 0.205
TOTAL® 17.043 6.067 0.216
MIN 1.797 0.856 0.000
MAX 54.778 21.492 1.712
LSTM MEAN 10.946 4.332 0.182
STD 5.538 2.106 0.196
TOTAL® 12.275 4.332 0.186
MIN 1.910 0.883 0.000
MAX 47.371 20.938 1.767
CNN-LSTM MEAN 10.749 4.275 0.178
STD 5.147 1.968 0.184
TOTAL® 11.917 4.275 0.186
MIN 2.532 1.650 0.000
MAX 38.582 17.031 0.870
CGAN MEAN 7.654 4.093 0.144
STD 2.466 1.090 0.118
ToTtaL® 8.042 4.093 0.154

*MAPE INDEX WAS APPLIED TO THE SPATIAL-TEMPORAL UNIT WITH MORE
THAN EIGHTY THREE PICK-UP RECORDS.

bHERE TOTAL MEANS THAT THE INDEX WAS APPLIED TO ALL THE
SUB-NETWORKS.

the CNN captures the spatial hierarchies of features through
backpropagation by using multiple convolution layers, while
the LSTM model mainly captures the temporal dependencies.
However, it was found that the LSTM improved the MSE
by 34.57%, while the CNN model improved the MSE by
14.87%. It may because that the spatial dependencies have
partially been considered in the data processing by the mod-
ified DBSCAN algorithm. According, the additional temporal
dependencies provided more improvements in LSTM. The
CNN-LSTM, as a combination of CNN and LSTM models,
slightly improved the performance of LSTM model by 5.13%
in terms of the MSE index. Compared to the LSTM mode,
the proposed CGAN model reduced the MSE, the MAE, and
the MAPE for the top 5% spatial-temporal units by 16.36%,
3.68%, and 8.61%, respectively, by training the adversarial
architecture.

D. Transferability of Comparison Results

Two-year taxi pickup data from New York city was
selected to test the effectiveness of the CGAN model and
examine the transferability based on the comparison results.
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From 2013 to 2014, a total of 350,441,563 taxi pickup records
were stored in the dataset, including the geocoded pickup
location information and the time instant stamps. The corre-
sponding traffic network data was also collected from Open
Street Map, while the POI information was obtained through
the internet. The proposed model layout kept unchanged.
Among the two-year data, the first 17 month-data was used as
the training dataset while the left 7 month-data was used as
the testing dataset. The proposed framework was then applied.
In summary, a total of 263 sub-networks were obtained via
the modified DBSCAN algorithm. And then the predictive
performance of the proposed CGAN model and the other
approaches were compared in Table I'V.

It was found that the comparison results were quite stable.
In most of the tests, the rank in the predictive performance of
various models either remained the same, or only changed
slightly. Once again, the proposed CGAN model outper-
formed the other approaches in all the three indexes. Besides,
the results confirmed the findings that were obtained using
the data from Beijing, China. Compared to the NN model,
the LSTM model provided higher improvement than the CNN
model. And the adversarial training process enhanced the
capability of the LSTM model, i.e., the generator G, to capture
the spatiotemporal correlation among taxi pickup data.

VI. CONCLUSION AND DISCUSSION

In this study, a DL framework, which combined the
modified DBSCAN model and a CGAN model, was pro-
posed to predict the taxi-passenger demand. The spatial
dependencies, the temporal dependencies, and the external
dependencies were considered in the proposed framework
simultaneously. More specifically, the modified DBSCAN
model was applied to produce a number of sub-networks
according to density-based spatial correlation among taxi pick-
up events. Taxi-passenger demand was thus aggregated and
predicted based on the sub-networks. And by adversarial train-
ing the two multi-layer LSTM networks, the proposed CGAN
model was fed with historical taxi-passenger demand informa-
tion, road network geometric information, land-use informa-
tion, and time labels. Different model layouts, i.e., different
numbers of LSTM layers in generator G and discriminator D,
were tested using the data collected in the Beijing area. It was
found that all those models provide reasonable predictions.
With the limited training data, more layers resulted in more
difficulties in training and more layers in the discriminator net-
work did not perform well. Additionally, the proposed CGAN
prediction model was compared with six typical approaches,
i.e.,, the MA, the ARIMA, the NN, the CNN, the LSTM,
and the CNN-LSTM model. The comparison results indicated
that the proposed model outperformed the other approaches
in all the three predictive performance indexes. And the
proposed CGAN model provided reasonable stability in the
transferability test.

The DL framework has the potential to be used for real-time
taxi-passenger demand prediction for both the traditional taxi
industry and the on-demand vehicle service. Once the model
is well trained, the input data involving the past taxi pick-up
information and the conditional information can be processed

Authorized licensed use limited to: CLEMSON UNIVERSITY. Downloaded on March 30,2021 at 04:46:34 UTC from IEEE Xplore. Restrictions apply.



3898

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 20, NO. 10, OCTOBER 2019

easily to generate the taxi-passenger demand predictions.
Accurate taxi-passenger demand forecasting can thus provide
suggestions for these platforms to arrange for the cruising cars
to meet the passenger demand. However, before the proposed
model is used in practical applications, more research is still
needed to further improve the model predictive performance.
Firstly, the proposed model currently involves only the taxi
pick-up information and some other static information. For
future research, we recommend including more information
in the CGAN model. For instance, a comprehensive model
with both the pick-up and drop-off information would be
pursued to improve the predictive accuracy. In that case, those
hyper-parameters shall also be investigated. Secondly, optimal
algorithm to train the adversarial architecture efficiently is
worth consideration. Finally, the interactions among the cluster
algorithm, i.e., the modified DBSCAN, the pre-specified time
interval, and the proposed prediction model are of great
interest and could be explored in future research.
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