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Abstract In this paper, we present a framework

allowing users to interact with geometrically complex

3D deformable objects using (multiple) haptic devices

based on an extended shape matching approach. There

are two major challenges for haptic-enabled interaction

using the shape matching method. The first is how

to obtain a rapid deformation propagation when a

large number of shape matching clusters exist. The

second is how to robustly handle the collision response

when the haptic interaction point hits the particle-

sampled deformable volume. Our framework extends

existing multi-resolution shape matching methods,

providing an improved energy convergence rate. This

is achieved by using adaptive integration strategies to

avoid insignificant shape matching iterations during the

simulation. Furthermore, we present a new mechanism

called stable constraint particle coupling which

ensures consistent deformable behavior during haptic

interaction. As demonstrated in our experimental

results, the proposed method provides natural and

smooth haptic rendering as well as efficient yet stable

deformable simulation of complex models in real time.

Keywords deformation; haptic rendering; shape

matching; multi-resolution

1 Introduction

Haptic-enabled deformable simulation has been an

important research topic. Haptic devices provide
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enhanced computer–human interaction in which

the user is not only able to visually observe 3D

geometric changes in an object, but also feel

and touch the object in the virtual world. It

plays a crucial role in various applications such as

computer animation [1, 2], medical training [3–6],

virtual rehabilitation [7], etc. Many computational

methods, such as the finite element method (FEM)

or mass–spring systems, have been developed to

model the dynamic 3D volumetric deformation of

soft objects. The shape matching [8] technique is a

competitive candidate for solving this problem as it

has several important advantages for haptic-enabled

deformable simulation. One of the most attractive

is that it supports unconditionally stable integration

under arbitrary user inputs (e.g., a large, abrupt,

impulse-like force).

The shape matching method typically subdivides

the volume of the deformable object into many

overlapping subgroups or clusters of particles.

Local as-rigid-as-possible transformation of

a cluster is computed first, while the global

deformation is obtained after local displacement

information for clusters has been sufficiently

exchanged. Geometrically complex 3D models

usually have a large number of clusters to capture

detailed local deformation, which can lead to slow

deformation convergence, especially considering

that haptic devices often require high frame rates

in practical applications. The situation becomes

more complicated with the involvement of multiple

haptic devices. Because the classical shape matching

approach is based on a position-driven pseudo-

dynamic system, some fundamental physical

parameters and relations are not clearly defined

within this framework. Robustly yet efficiently

accommodating the interaction between the haptic
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interaction points (HIPs) and the deformable object

is another key challenge.

To address the aforementioned issues, we propose

a novel haptic-enabled framework using a particle

cluster hierarchy. The proposed framework is able

to effectively boost the convergence rate of the

deformation energy during the simulation via

three adaptive iteration strategies which track the

variation of energy density during the simulation

and thereby avoid unnecessary computation. The key

component of the framework is a new mechanism

that ensures smooth interaction between the haptic

devices and the virtual deformable objects. The

deformation trajectory remains consistent after

an HIP hits the object. This method intuitively

supports stable and efficient force rendering with

multiple haptic devices. Specifically, the technical

contributions of this work can be summarized as

follows:

• We present an efficient and robust framework

that allows real-time interaction with 3D

deformable objects using (multiple) haptic

devices. It inherits the unconditional stability

and high efficiency of the shape matching

approach to provide natural and smooth haptic

rendering.

• Based on a cluster hierarchy, an optimized

adaptive simulation algorithm is given to

accelerate energy convergence, allowing the

capture of rich local deformation details.

• A new technique, stable constraint particle

coupling, is provided for haptic interaction.

When an HIP collides with the deformable

object, the original optimal as-rigid-as-possible

status of the object is not influenced by the

newly inserted particle, eliminating jittering

artifacts.

2 Related work

Simulating 3D elastic deformation using FEM

has long been an active topic in many research

communities including computational mechanics,

computer graphics, and virtual reality. Pentland

and Williams [9] borrowed the idea of modal

analysis that decomposes the 3D deformation into

vibrations of different frequencies. The computation

speed is greatly boosted by discarding the high-

frequency modes. This method was later extended

to co-rotational deformable models [10], nonlinear

deformation modes [11], and hybrid deformable

models [12]. It has been successfully adopted for

real-time haptic interaction [1, 13–15]. An invertible

element [16] approach provides robust FEM

simulation under extreme deformations. However,

because of its high computational cost, this method

is impractical for direct deployment for haptic

interaction.

Another line of contributions uses a simplified

physical model and constructs the simulator with

a more intuitive formulation. For example, the

mass–spring system approach [17, 18] adopts

spring-connected mass particles to model the

force–displacement relation. A mass–spring system

strongly couples each pair of neighboring particles,

requiring the iterative solution of a large nonlinear

system at each time step. While recent research has

significantly improved the efficiency of integration

of the mass–spring system [19], it is still quite

challenging to handle geometrically complex models

in real-time with haptic devices. However, the shape

matching method, using position based dynamics

(PBD) [20, 21], is able to provide a fast, controllable,

and unconditionally-stable dynamic simulation.

Unlike mass–spring systems, this method [8, 22] is

essentially a meshless method grouping the particle

cloud into clusters. The computation associated

with each cluster is independent making the shape

matching based deformable model much more

lightweight. Rivers and James [23] used overlapped

clusters (in a lattice) to control the stiffness of the

deformable object. Steinemann et al. [24] extended

this work by using dynamic adaptive selection of

levels of details (LODs). A similar idea has also been

applied for quasi-static mesh deformation [25, 26].

In such cluster-based shape matching methods, the

local optimum of the deformation energy is found by

computing the best fitting rigid body rotation and

translation. Each cluster has no information about

its neighbors until the average displacement of each

overlapping region is determined. The system has to

repeat this matching and averaging procedure many

times in order to sufficiently reduce the energy for a

large deformation, similarly to the well-known Jacobi

solver. To improve the energy convergence rate,

multigrid methods [27–29] have been adopted. In
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this paper, we extend the idea of hierarchical shape

matching (HSM) with enhanced adaptive strategies

to further reduce the cost introduced by the cluster

hierarchy, which can be seamlessly integrated within

state-of-the-art shape matching based frameworks.

Haptic devices typically require high-rate force

rendering in order to deliver a satisfactory user

experience. Accordingly, Otaduy and Lin [30]

proposed a multi-rate architecture splitting the

haptic rendering pipeline into a haptic thread and a

contact thread. Here, force rendering is independent

of the time integration of the dynamic system. As

shown in Fig. 1, we also adopt this framework,

running the haptic thread and the simulation thread

asynchronously. The responsive force to be rendered

via haptic devices is often approximated as a spring-

like force [3, 31] based on the Euclidean distance

between the contact point and the HIP. Instead,

we use a more physically meaningful approach that

formulates the collision force as the partial derivative

of the deformation energy [1, 2, 32], following

the intuition that forces are always dragging the

deformed particles back to their rest positions.

Virtual force coupling [33–35] is also used in our

system to ensure that the haptically rendered force

is smooth and natural.

3 Adaptive shape matching using

cluster hierarchy

The surface geometry of the deformable object is

represented by a triangle mesh. A volumetric particle

cloud is automatically generated by voxelizing the

original triangle mesh. Each corner of a voxel (cube)

Fig. 1 Following existing work [30], our framework also uses a

haptic thread and a simulation thread.

is associated with a particle as shown in Fig. 2.

Particles are grouped into overlapping clusters. A

natural choice is to select the eight particles of a

voxel as a cluster. In this case, neighboring clusters

sharing a facet have four overlapping particles. When

the particle cloud deforms, the geometry of the

embedded triangle mesh can be easily computed

using trilinear interpolation. In the rest of the paper,

we simply refer to the clustered particle cloud as the

cube mesh or cluster mesh.

Shape matching of clustered particles. Each

particle is associated with an initial position, a

current position, and a goal position denoted

respectively by x 0
ij , x ij , and g ij , for the jth particle

in the ith cluster. Each particle is also assigned a

mass mij . The goal position of the particles specifies

a configuration in which the corresponding cluster

has zero deformation potential. When external

forces are applied, particles are virtually displaced

via Newton’s second law without consideration of

internal forces at first. The goal positions of each

cluster’s particles represent a certain rigid body

motion (i.e., a null-deformation displacement) that

is closest to the displaced cluster. Thus, the goal

position of particle j in cluster i is given by

g ij = Rix
0
ij + t i (1)

where Ri ∈ SO3 and t i ∈ R3 represent the best

fitting rotation and a translation to be determined,

respectively. It can be shown that t i is just the offset

of the cluster centroid and R can be computed by

applying polar decomposition or SVD to the moment

matrix of the cluster. We refer to such computation

for obtaining R and t for each cluster as shape

matching (SM). The quadratic deformation energy

or potential Ei is defined as the mass-weighted sum

of the square distances between the current positions

and the goal positions for all particles in cluster i:

Fig. 2 Elephant model and corresponding cube meshes of

different resolutions: the coarse cube mesh is generated by

voxelizing the bounding volume of the surface mesh at resolution

10× 10× 10. Finer cube meshes are generated by subdivision.
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Ei =
∑
j

mij | g ij − x ij |2

=
∑
j

mij | Rix
0
ij + t i − x ij |2 (2)

The displacements of overlapping particles in

neighboring clusters are averaged so that the cube

mesh does not split. Naturally, such displacement

averaging impairs the optimality of R and t and

one may need to repeat the SM computation

multiple times. We call an individual iteration

of performing SM and neighbor averaging an

SM iteration. The procedure of SM iteration is

similar to the so-called local–global optimization in

recent contributions [36]. It is guaranteed that each

iteration monotonically reduces the deformation

potential of the entire voxel mesh. After SM

iterations terminate, a forward Euler step is used,

with time step size h, to update the velocity and

displacement of all particles (subscripts omitted):{
v(t+ h) = v(t) + α(g(t)− x (t))/h+ hf ext(t)/m

x (t+ h) = x (t) + hv(t+ h)

(3)

Cluster hierarchy. Our method is inspired

by the classic multigrid technique [37] and existing

work [24, 27, 38] on using multi-resolution simulation

to accelerate energy convergence. A cluster hierarchy

of multiple levels is constructed. The coarsest cube

mesh is initially built at the top level (level 0).

Each cube is further divided into multiple sub-cubes

at the next lower level as shown in Fig. 2. Sub-

cubes outside the surface mesh are discarded. The

resolution of the cube meshes as well as the depth

of the hierarchy can be interactively specified in the

GUI provided by our system. Typically, a hierarchy

of three to five levels is used in our experiments.

We may incorporate more overlapping particles, as

used in fast lattice shape matching (FLSM) [23], to

further adjust the “stiffness” of the object.

3.1 Adaptive hierarchical shape matching

Using the cluster hierarchy, the deformable

simulation begins with the SM iteration at

the top (coarsest) level. After sufficient energy

reduction occurs, the algorithm proceeds to clusters

at the next level, based on the results from the

previous level. Afterwards, the external forces are

incorporated using a forward Euler step (Eq. (3))

for clusters at the bottom level, which triggers

vibrational deformations due to the inertia terms

and pulls the clusters away from their goal positions.

In the next time step, the initial configuration of

top-level clusters (R and t) are set to the blended

rotations (e.g., using Slerp [39]) and translations

of lower-level clusters. This procedure mimics the

standard V-cycle in the multigrid approach [37],

and has been adopted in many existing SM-based

frameworks [24, 27, 28]. We refer to this algorithm

as hierarchical shape matching (HSM).

Our framework further improves the simulation

efficiency. The key inspiration is that not all SM

iterations play equally important roles in shaping

the deformed geometry of the object. In fact, our

experiment shows that a considerable number of SM

iterations (over 25%) can be avoided by checking

three conditions during the multi-level SM iteration:

a termination condition, a subdivision condition, and

an origination condition, which we now discuss in

detail.

Termination condition. Following the intuition

that the SM iteration goes to the finer level after

current level iterations do not effectively reduce the

energy potential, we evaluate the energy reduction

rate rl at the lth level as

rl =
∑
i

Ψk
l,i − Ψk−1

l,i (4)

where Ψl,i defines the energy density of cluster i.

Superscripts k and k − 1 indicate the SM iteration

index. Ψl,i is computed as Ψl,i = El,i/nid
2
l , where

ni is the number of particles in the ith cluster

and dl is the voxel size at level l. We use a

threshold value Tr to examine the effectiveness of

SM iteration. Iteration at the current level l is

terminated and simulation moves to the next level

when the termination condition, Ct ≡ rl < Tr, is

satisfied.

Subdivision condition. If clusters at coarser

level already well capture the deformed mesh

geometry, we should not perform iteration at finer

levels. Thus, SM iteration should only be applied

to clusters whose energy density is larger than some

threshold, Ts, i.e., Cs ≡ Ψl,i > Ts. We call this the

subdivision condition. All child clusters of a cluster

Cs are called active clusters. Figure 3 shows how

clusters evolve and SM information is passed as the

Buddha model bends.

Origination condition. External forces cause

256



Stable haptic interaction based on adaptive hierarchical shape matching 257

Fig. 3 Example of SM iteration strategy: at the tth time step,

simulation begins from the top level (level zero). Clusters in the

top portion of the 3D model satisfy the subdivision condition and

further SM iterations are continued at levels one and two. When

the simulator advances to step t+1, the origination condition at

level zero fails. Therefore the simulation starts from level one.

The dashed grey arrows indicate how SM information is passed.

the energy potential to increase. However it is

possible that the external forces are subtle and

local, and only cause small local deformations.

For instance, a light breeze only sways the leaves

of a willow tree while its major branches remain

still (Fig. 10). Such small deviations of particles’

positions will induce a larger perturbation of energy

density for clusters at lower levels (because dl is

smaller). Blindly performing complete top–down

SM iteration could include redundant computations

and slow the simulation. Thus, we track the energy

increase induced by forward Euler integration for all

clusters subject to external forces1 via
∑

i Ψ
∗
l,i−Ψl,i,

where Ψ∗l,i denotes the energy density after applying

the forward Euler step. The origination condition

finds a level whose energy reduction rate in the

previous time step is comparable with the energy

increase: Co ≡ rl ≈
∑

i Ψ
∗
l,i − Ψl,i, and sets it as the

starting level.

Algorithm 1 outlines our adaptive SM iteration

strategy. Our method differs from existing

methods [24, 27, 28] by not only addressing

the questions of “where and when should the

iteration end?” but also “where and when should

the iteration start?”, which further accelerates the

energy convergence.

4 Stable constraint particle coupling

The core component in a haptic-enabled simulation

1 Since forces are applied to particles at the bottom clusters, all of

their parent clusters are also considered.

Algorithm 1: Adaptive shape matching

l← 0; /* l is the current shape matching level */

while simulation is active do

while l < n do

for all clusters at level l do
inherit R and t from parents;

end

while !Ct do

for all active clusters at level l do
shape matching iteration;

end

update rl;
end

for all active clusters at level l do

if Cs then
set child clusters as active clusters;

end

end

l← l + 1;
end

/* now l = n */

for all clusters do
forward Euler (Eq. (3));

end

update surface mesh;

while l > 0 do

if Co then
break; /* starting level of next step found */

end

else
l← l− 1;

end

end

end

environment is a robust and efficient mechanism for

handling the interaction between HIPs and the 3D

deformable objects. While collision detection can

be dealt with by most existing techniques [40], it

is unlikely that the HIP really hits a particular

particle inside the object. A simple solution to

tackle this problem is to insert a new constraint

particle (CP) into the cluster where the HIP resides.

This method is referred to as constraint particle

coupling (CPC) [2]. Unfortunately, adding CPs

destroys the optimality of the computed R and t for

the current SM iteration. Tian et al. [2] alleviate

this problem by introducing an additional virtual

particle or ghost particle (GP) paired with the CP

so that the centroid of the cluster is maintained.

However, jittery deformation still exists because such

a method cannot guarantee to preserve the optimal

rotation (Fig. 4). Motivated by this challenge, we

propose an enhanced strategy called stable constraint

particle coupling (SCPC), which ensures a smooth

interaction between HIPs and objects.
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Fig. 4 Comparison between CPC and SCPC. An HIP hits the

bar model along the normal direction of the front facet. CPC

generates an unexpected lateral bending while SCPC leads to a

more natural deformation response.

4.1 Optimal translation

Inserting a new CP corresponding to HIP yields a

perturbation of the optimal translation t = c − c0,

where c0 and c denote the goal and current cluster

centroid before the HIP hits the object, respectively.

Following CPC [2], we insert an extra GP into the

cluster; the updated cluster centroid can be written

as 
c0′

=

∑
mjx

0
j +mcpx 0

cp +mgpx 0
gp∑

mj +mcp +mgp

c′ =

∑
mjx j +mcpx cp +mgpx gp∑

mj +mcp +mgp

(5)

Eliminating the perturbation of t leads to

c − c0 = c′ − c0′
=

∑
mix i∑
mi

−
∑
mix

0
i∑

mi
(6)

Without loss of generality, we assume that the mass

associated with each particle is the same and Eq. (6)

leads to {
x 0

gp = 2c0 − x 0
cp

x gp = 2c − x cp
(7)

which implies that the optimal translation can

be maintained as long as the GP is inserted

symmetrically with respect to the CP about the

original cluster centroid.

4.2 Optimal rotation

One way to obtain the optimal rotation is to apply

SVD to the moment matrix A of the cluster, defined

as

A =
∑
j

mjpjq
>
j (8)

where q j = x 0
j − c0 and pj = x j − c are the

initial and current positions of the particle defined

in a local coordinate frame with origin at the cluster

centroid, respectively. Applying SVD to A leads to

A = UΛΛΛV>; the optimal rotation is just:

R = U V> (9)

Recall that in our implementation, each cluster

has eight particles corresponding to the corners

of a cube. Substituting Eq. (8) into the SVD

formulation, following some manipulation, we obtain

(again for convenience of explanation, assuming

identical particle masses):

U>(p1q>1 + p2q>2 + ...+ p8q>8 )V = ΛΛΛ (10)

Adding the CP as well as its paired GP adds two

extra terms to the left-hand side of Eq. (10). Because

of the centroid-symmetry relating the GP and CP

(pcpq>cp = pgpq>gp), the left of Eq. (10) becomes

U>(p1q>1 + ...+ p8q>8 )V + 2U>(p9q>9 )V

Keeping both U and V unchanged to retain the

optimal rotation R implies that the newly added

term U>(p9q>9 )V needs to be a diagonal matrix.

Consequently, two supplementary pairs of GPs are

further added to the cluster. Each pair of GPs

is centroid symmetric so that they do not change

the optimal translation. Similarly, we must ensure

that all of these extra terms, which correspond to

the inserted particles, form a diagonal matrix ΛΛΛ∗

satisfying:

U>(p9q>9 + p10q>10 + p11q>11)V = ΛΛΛ∗ (11)

Since p = Rq = UV>q , Eq. (11) can be simplified

to

dd> + ee> + ff > = ΛΛΛ∗ (12)

where d = V>q9, e = V>q10, and f = V>q11.

As all off-diagonal entires in ΛΛΛ∗ are zero, expanding

Eq. (12) yields:
d1d2 + e1e2 + f1f2 = 0

d1d3 + e1e3 + f1f3 = 0

d2d3 + e2e3 + f2f3 = 0

(13)

Note that d is known; we have six unknowns

and only three equations. Thus, Eq. (13) is

underconstrained and has multiple solutions. In

our implementation, we just set e1 = d1, e2 = d2,

f1 = d3, and solve for the other unknowns. In

other words, SCPC adds six extra particles to keep

U>AV diagonal as shown in Fig. 5.

4.3 Haptic rendering

The internal force at the HIP is computed as the

derivative of the deformation energy with respect

to its current position at the corresponding active
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Fig. 5 Stable constraint particle coupling adds five GPs and

one CP to the cluster.

bottom cluster:

f = κ(gcp − x cp) (14)

where κ is a constant determining the stiffness of the

object. gcp is the goal position of CP. In addition,

we apply virtual coupling [33] by adding a damping

force to this framework when computing the coupling

force, which guarantees stability of haptic rendering.

4.4 Visuo-haptic procedure

The visuo-haptic procedure includes a simulation

thread and a haptic thread. In the simulation

thread, a bounded deformation tree (BD-tree) [41–

43] is constructed for collision detection.

The simulation thread executes the following

sequentially at every time step:

1) Initialization: Set the proxy position xp

as the device position of the last time step, and the

the HIP position as xHIP. Set a line segment to be

xpxHIP.

2) Collision handling: If no collision was

detected in the last time step, check whether a

collision happens between xpxHIP and the object

surface. If a collision was detected in the last time

step, check whether a collision happens between

xHIPgcp and the object surface. If there is an

intersection with the surface mesh, the proxy

position xp is set to this intersection point. The

corresponding cluster of each level in the cluster

hierarchy which contains the interaction point is

labeled. If there is no collision, set the proxy position

to the HIP position.

3) Adding coupling particles: Remove any

coupling particles (CP and GPs) from the last time

step. If a collision happens, add one CP and five

GPs for cluster Ci using SCPC at the current level

(as discussed in Section 4).

4) Perform optimization: Perform adaptive

shape matching as in Algorithm 1.

5) Surface mesh interpolation: Update

the positions of the surface mesh by trilinear

interpolation.

The haptic thread executes the following:

1) Contact force: Compute contact forces as

described in Section 4.3 using the current device

state and constraint particles.

2) Coupling force: Compute coupling forces by

virtual coupling based on the stability condition, and

send the coupling forces to the device controller.

5 Experimental results

The proposed framework was implemented in

Microsoft Vistual C++ 2010 on a 64-bit Windows

7 PC equipped with an Intel Xeon 2.8 GHz CPU

and 6.0 GB RAM. Only a single thread was used

in our experiments and reported data. We refer

readers to the accompanying videos in the Electronic

Supplementary Material (ESM) for a more concrete

visual impression of the results. Up to two Phantom

Omni haptic devices [44] were used to interactively

manipulate the deformable model shown in Fig. 6.

Table 1 provides statistics of all the 3D models tested

in our experiments while Table 2 shows detailed

information about the cluster hierarchy setup as well

as comparative time performances. As indicated in

Table 2, the proposed adaptive iteration rule has a

notable efficiency advantage over the classic HSM

method.

Figure 7 compares our method and the naive shape

Fig. 6 Experimental setup.
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Table 1 Model statistics. #Face and #Vert.: numbers of

triangles and vertices of the input surface mesh, respectively.

#Cluster: number of clusters at each level

Model
Statistics Cluster hierarchy

#Face #Vert. #Cluster

Bar 86 45 81/648/4000

Willow tree 5000 4000 703/3000/10,000

Elephant 85,000 42,000 202/954/5000

Sailboat 104,000 60,000
454/2000/12,000/

71,000

Dinosaur 123,000 58,000
258/841/3000/

17,000/98,000

Heart 53,000 178,000 914/6000/34,000

Fig. 7 Snapshots of simulation using the NSM method (top)

and our method (bottom). Scripted forces are highlighted by

blue arrows in the figure.

Fig. 8 Energy changes during iterations of the first two time

steps for the elephant model in Fig. 7.

matching (NSM) approach. The forces, indicated

as blue arrows in the figure, are applied to shake

the trunk of the elephant. At each time step, the

surface mesh is updated after each cluster completes

just one shape matching. Using NSM (top row), we

can clearly see an unnatural wave-like deformation

in the nose. With our method, a more natural result

is produced (bottom row). This result also suggests

the slow energy convergence of the NSM method.

To achieve the same energy reduction as the one

after 15 iterations of our adaptive method, NSM

needs over 2200 iterations. In terms of computational

efficiency, classic HSM is about 190 times faster than

NSM while our method is up to 310 times faster.

Table 2 reports the simulation performance in detail.

On average, our method is orders-of-magnitude

faster than NSM and consistently outperforms HSM

by 30%–50%. In some extreme cases (e.g., very

large and subtle deformations occur), our method

provides better performance improvements due to

the adaptive iteration strategies used. Figure 8

shows how the deformation potential is reduced

along the simulation during the first two time steps

using NSM, HSM, and our method, for the elephant

animation shown in Fig. 7.

Figure 4 compares results of collision handling

using CPC and SCPC. In this experiment, the user

slightly pushes the bar model along the negative z

axis with an HIP. CPC results in unexpected bending

because it does not preserve the optimal rotation

for the corresponding cluster. If the HIP leaves the

object immediately, such bending is undone. As

a result, the model jumps back and forth between

these two different deformation configurations. Our

SCPC method eliminates such artifacts and produces

smooth deformation instead.

The force rendering in our proposed framework is

smooth and natural. In Fig. 9(a), the user bends

the bar model with a single haptic device; the

corresponding force variation is shown. The harder

the bar is bent the larger force rendered, which

provides a reasonable interaction to the user. In

Fig. 9 Force rendered at HIP along with the SM iteration with

(a) one and (b) two haptic devices.
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Table 2 Time and computation performance. Comp. intensity: average number of SM iterations required at each step to achieve

energy convergence. Time benchmark: average computational time for a single time step when simulating the 3D model

Model
Comp. intensity (#SM iteration) Time benchmark

NSM HSM Our method NSM HSM Our method

Bar 2.1 × 106 9000 6000 (∼ 352×) 1.07 s 4 ms 3 ms (∼ 417×)

Willow tree 10.9 × 106 35,000 29,000 (∼ 372×) 3.81 s 16 ms 11 ms (∼ 354×)

Elephant 6.9 × 106 27,000 22,000 (∼ 314×) 1.86 s 10 ms 6 ms (∼ 310×)

Sailboat 34 × 106 82,000 57,000 (∼ 594×) 8.41 s 26 ms 12 ms (∼ 675×)

Dinosaur 48 × 106 66,000 59,000 (∼ 822×) 12.60 s 22 ms 16 ms (∼ 788×)

Heart 19 × 106 58 48,000 (∼ 407×) 5.10 s 18 ms 12 ms (∼ 407×)

Fig. 10 Willow tree swaying in the wind. We impose light, medium, and strong wind fields to the model; our adaptive iteration

strategy significantly reduces the number of iterations used. See the video in the ESM for more details.

Fig. 11 Two haptic devices interact with a deformable dinosaur model. HIPs are shown as grey spheres. Realistic results are

produced even under extreme deformation. A five-level cluster hierarchy is used in this example.

Fig. 9(b), two haptic devices are used. HIP1 is

attached to the prow of the sailboat while HIP2 is

attached to the stern. HIP2 is held fixed by one user

while the other user pulls HIP1 up. We record the

magnitude of the rendered force for HIP2 during SM

iteration, using both NSM and our method. It can

be clearly seen that, thanks to the accelerated energy

convergence, HIP2 instantly renders the responsive

force due to the interaction with HIP1 while NSM

suffers a lengthy force delay.

Our method is particularly good at simulating

geometrically complex models with rich local details.

Figure 10 shows the snapshots of a willow tree

swaying in the wind. We refer readers to the

accompanying video in the ESM for details, where we

show three different scenarios with weak, medium,

and strong winds. The proposed adaptive simulation

strategy is able to well accommodate wind fields of

different intensities, and natural results are produced

yet the simulation is still efficient.

In Fig. 11, two haptic devices interact with the

dinosaur model simultaneously. It can be seen

that our system is quite robust even under extreme

deformations imposed by the user. Another example

is shown in Fig. 12. In this case we assess our

framework using some medical data. It is a non-

manifold mesh with ill-positioned triangles and edge

topology. Our system can still create a realistic

virtual environment allowing the user to interactively

manipulate the model using multiple haptic devices.
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Fig. 12 A beating heart model is interactively manipulated by two haptic devices. The HIPs are shown as grey spheres. A

three-level cluster hierarchy is used in this example.

6 Conclusions and future work

In this paper, we have presented a novel system

to simulate deformation of geometrically complex

objects with real-time interaction using multiple

haptic devices based on adaptive hierarchical shape

matching. We use a multi-resolution hierarchy of

particle clouds with three adaptive strategies to

boost the energy convergence speed while still

well capturing locally detailed deformation. Our

approach works well with existing methods such

as FLSM. Multi-haptic interaction is a challenging

problem and it is well handled with our new

particle coupling technique. It guarantees optimality

of the cluster’s existing rotation and translation, and

preserves a smooth deformation trajectory. Based

on this technique, the force rendered by the haptic

device is smooth and realistic.

There are many possibilities for future work that

could improve the current system. First of all, the

computation of the optimal rotation and translation

is essentially independent for each cluster. Thus,

a parallel implementation of the proposed system

could give much better performance and enable

users to interact with more complicated scenarios

in real time. Secondly, shape matching depends

on a geometry-based pseudo-dynamic deformable

model. We still lack of a good representation

to accurately incorporate elastic materials with

different parameters such as Young’s modulus or

Poisson’s ratio. Because of this limitation, the

proposed system is not yet suitable for applications

that require highly accurate simulation, such as

optimization for 3D printing. How to integrate

material properties into the system remains an

interesting and challenging topic. Another promising

direction is to further extend our system to a

networked tele-immersive virtual environment. In

this case, special care needs to be taken to handle

connection stability of the network and provide a

high-quality user experience.
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