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Interactive Mechanism Modeling from Multi-view Images

(a) Input multi-view data (b) Modeling (c) Interactive modeling (d) Refined result

Figure 1: (a) An example of point cloud data reconstructed from multi-view images of a piston-engine model. (b) The extracted 3D part
models are overlaid on the image with cyan color, and the three red strokes indicate the current part drawn by the user. The details added
in the refined result in (d), i.e. the holes of the driving gear, are generated in Blender softwares based on the 3D modeling results using
our approach in (c) within 3 minutes. The whole modeling process only takes around 25 minutes on an off-the-shelf computer. The red
arrows visualize the allowed motion of its movable parts. Please see the accompanied video for the kinematic simulation of the reconstructed
mechanism model.

Abstract1

In this paper we present an interactive mechanism modeling system2

from multi-view images. Its key feature is that the generated 3D3

mechanism models contain not only their geometry information but4

also their internal motion structure: they can be directly animated5

through kinematic simulation. Our system can be generally sepa-6

rated into two steps: interactive 3D modeling and stochastic motion7

parameter estimation. At the 3D modeling step, our system is de-8

signed to integrate the sparse 3D points reconstructed from multi-9

view images and a sketch interface to achieve accurate 3D model-10

ing of a mechanism. To recover the motion parameters, we record a11

video clip of the motion of an input mechanism and adopt stochas-12

tic optimization to recover its motion parameters by matching the13

edge information in video frames and the projected 2D silhouettes14

of the 3D parts. Experimental results show that our system can be15

practically applied for the 3D modeling of a range of mechanisms16

from simple mechanical toys to complex mechanism objects.17
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object representations21
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1 Introduction25

Mechanism modeling is one of the central tasks in commercial26

CAD softwares, such as Autodesk Inventor and Solidworks. A typi-27

cal mechanism modeling procedure usually includes two steps: cre-28

ate 3D part models and design joint constraints between the parts29

so as to achieve the desirable motion. However, the state-of-the-art30

CAD software packages focus on providing professional tools for31

expert users to create mechanisms; it is a non-trivial task for an av-32

erage user to learn the necessary knowledge to efficiently use such33

software packages to create complex mechanism models.34

Motivated by the recent progress in image-based interactive mod-35

eling [Sinha et al. 2008; Chen et al. 2013], in this paper we pro-36

pose a multi-view image-based mechanism modeling system for37

a variety of users who may only have preliminary knowledge in38

mechanism design. The system is designed to utilize the visible39

geometric relationship between parts in the images to guide users40

in complex mechanism modeling. Even though there exist a va-41

riety of 3D modeling algorithms from multi-view images [Hartley42

and Zisserman 2004; Seitz et al. 2006], it is technically challenging43

to straightforwardly extend these methodologies to model complex44

man-made objects such as high-quality, functioning 3D mechanism45

models. Its main reasons are: First, as a complex man-made object,46

a mechanism typically consists of many interlinked parts, which47

leads to severe occlusions among them in 2D images. Therefore,48

existing multi-view 3D modeling approaches would fall short to49

handle such cases. Second, its internal motion structure, includ-50

ing the motion constraints among parts, is essential to realize the51

functional design of a mechanism. Nevertheless, identifying such52

a motion structure is non-trivial, because this would require algo-53

rithms not only to model the 3D shape of each part accurately but54

also to robustly estimate its underlying motion constraints, i.e., the55

joints among different parts.56

The major contribution of this paper is the development of a novel57

interactive mechanism modeling approach based on multi-view im-58

ages, which tackles the above technical challenges on the accurate59

reconstruction of both part shapes and motion parameters of mech-60

anisms:61

• Inspired by [Chen et al. 2013], we extend the stroke-based62

sweep modeling interface to create 3D parts. Our interactive63

modeling interface not only enables users to create the 3D64

shape of each part from the view where it is mostly visible us-65

ing generalized cylinders or cube shapes, but also assists users66

to determine the accurate shape and placement of each part67

in 3D through the integration of the sparse point cloud data68

reconstructed from them. Besides, new snapping operations69

are introduced to assist the estimation of correct geometric70

relationship between parts, and the part details can be added71

through parametric modeling. Furthermore, we also develop72

an alignment algorithm, a variant of the inter-part optimiza-73

tion in [Chen et al. 2013], to optimize the modeling result to74
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enforce the alignment constraints among parts, such as par-75

allelism, orthogonality and attachment. The algorithm is a76

single step optimization with 3D point cloud registration term77

and additional snapping constraints.78

• In order to recover the motion structure of a mechanism, we79

record a video clip of its movements under a specific view. A80

stochastic motion parameter estimation algorithm is designed81

to estimate the types of joints between parts and the motion82

parameters of each part so that the motion of 2D part silhou-83

ettes matches the motion of edges detected in the acquired84

motion video. The joint types are treated as discrete variables,85

and their possible values are estimated through the geomet-86

ric shape of their intersections according to the mechanism-87

specific domain knowledge [Slater 2011]. The formed dis-88

crete configuration space is searched using a tree-like repre-89

sentation of mechanism to avoid combinatorial explosion, un-90

der the assumption that the motion of the mechanism can be91

kinematically controlled. The kinematic loops are supported92

in our system.93

We have tested our system on a variety of mechanical objects, rang-94

ing from mechanical toys to real mechanisms. The modeling time95

is around 10 to 30 minutes on an off-the-shelf computer, depend-96

ing on the complexity of the mechanism. Our experimental results97

show that our system is capable of effectively reconstructing var-98

ious mechanism objects from multi-view images, and the recon-99

structed 3D mechanism models can be directly used for a variety of100

animation and functional demonstration applications.101

2 Related Work102

Multi-view 3D modeling: The goal of multi-view 3D modeling103

is to create complete 3D models from the captured images, and104

its theory is rigorously formulated in the seminal textbook [Hart-105

ley and Zisserman 2004]. A comprehensive survey of multi-view106

3D modeling research is given in [Seitz et al. 2006]. Generally,107

the pipeline of multi-view 3D modeling consists of three steps:108

the calibration of intrinsic and extrinsic camera parameters [Zhang109

2000; Song et al. 2013], dense correspondences among multiple110

images [Furukawa and Ponce 2007; Valgaerts et al. 2012; Ahmad-111

abadian et al. 2013], and stereo triangulation to compute 3D points.112

Multi-view 3D modeling has also been extended to handle large113

scale images from Internet, such as photo tourism [Snavely et al.114

2006] and Rome city modeling [Agarwal et al. 2011].115

Our work is mostly related to the interactive architecture modeling116

from a collection of photos in [Sinha et al. 2008]. However, differ-117

ent from the 3D plane construction in [Sinha et al. 2008], our work118

focuses on the shape of mechanical part primitives and their motion119

constraints to obtain both geometry and structure information of a120

mechanism object.121

Sketch-based 3D modeling: Sketching interface, in contrast to122

WIMP (Windows, Icon, Menu, Pointer), is a metaphor of pen-ink123

user interaction, which is preferred by designers for the concept124

design of 3D products. It has been applied to a variety of applica-125

tions, such as architecture modeling [Chen et al. 2008], volumetric126

modeling [Owada et al. 2007; Schmidt et al. 2007; Owada et al.127

2004], the interpretation of concept sketches [Shao et al. 2013] and128

3D shape retrieval [Eitz et al. 2012b]. Eitz et al. [2012a] also in-129

vestigated how to recognize object categories from user sketches.130

A survey of sketch-based modeling techniques is given in [Olsen131

et al. 2009].132

An essential step in sketch-based 3D modeling is to convert the 2D133

strokes drawn on the screen into 3D curves. Igarashi et al. [1999]134

create 3D objects using inflation, by assuming the user-drawn 2D135

freeform strokes are silhouettes of the 3D objects. In [Nealen et al.136

2007], the drawn freeform curves can be further edited to control137

the final shape of the 3D objects. With the assistance of epipolar ge-138

ometry or 3D scaffold, users can draw a freeform 3D curve network139

as a sparse representation of a 3D shape [Bae et al. 2008; Schmidt140

et al. 2009]. A recent contribution in [Xu et al. 2014] interprets 2D141

strokes as 3D curves through the integration of sketch fidelity and142

regularity constraints. The constructed 3D curve network can be143

converted into a surface model by interpreting the geometry of its144

closed curve patches as spline patches or quad meshes [Abbasine-145

jad et al. 2011; Bessmeltsev et al. 2012; Sadri and Singh 2014].146

Our work is inspired by a recent work on combining sketching in-147

terface with image edge information for sweeping-based model-148

ing [Chen et al. 2013], named 3-sweep modeling. While the 3-149

sweep system focuses on 3D modeling from a single photo, the goal150

of our work is to model mechanism objects with complex struc-151

tures, which is difficult to be fully captured in a single view due to152

unavoidable internal occlusions. Our algorithm also supports the153

integration of sparse point cloud information and image edges to154

get an illustrative 3D mechanism model to aid product design.155

Multi-component 3D models: The key of the processing of a156

multi-component 3D model is how to maintain the proper con-157

straints among its components. For example, the editing of a multi-158

component 3D mesh model emphasizes the importance of the mo-159

tion, symmetry, and primitive shape preserving constraints for high-160

quality editing results [Xu et al. 2009; Gal et al. 2009; Zheng et al.161

2011; Kraevoy et al. 2008]. Such constraints have also been consid-162

ered in various research efforts on multi-component model process-163

ing, including hierarchy analysis [Wang et al. 2011], internal struc-164

ture visualization [Li et al. 2008], image-based modeling [Xu et al.165

2011; Zheng et al. 2012] and component-based geometry synthesis166

and fitting to point clouds [Kalogerakis et al. 2012; Xu et al. 2012;167

Shen et al. 2012]. A comprehensive survey of structure-aware pro-168

cessing of multi-component models can be found in [Mitra et al.169

2013a].170

For a mechanism with multiple parts, Niloy et al. [2013b] proposed171

a method to visualize its possible motion. Recently, several ap-172

proaches have been presented to design and fabricate mechanism173

objects using 3D printing technique [Zhu et al. 2012; Bächer et al.174

2012; Ceylan et al. 2013; Coros et al. 2013; Thomaszewski et al.175

2014]. There also exist researches on modeling mechanism from176

point-cloud data. However, they mainly focus on extracting geo-177

metric primitives, such as cylinders and 3D parts, and did not at-178

tempt to recover the motion structure of mechanisms [Huang and179

Menq 2002; Bey et al. 2011]. The goal of our work is to facilitate180

the 3D modeling of functional mechanism objects, and the output181

of our system is multi-part mechanism models which are ready to182

be the input of the above editing, analysis and visualization algo-183

rithms.184

3 Multi-view Modeling Preliminaries185

Based on user strokes drawn on 2D images, we need to estimate186

their 3D positions in order to reconstruct 3D part shapes. In other187

words, given multi-view images as the input, for a 2D pixel we need188

to estimate its global Z value so as to decide its 3D position in the189

world coordinate system. In our approach, the Z values are treated190

as the optimization variables. After the Z values are obtained, the191

global X and Y coordinates for a pixel (x, y) can be determined192

using the projection matrix calculated in the construction of sparse193

point cloud data, described below.194

Let us first denote the intrinsic and extrinsic matrices associated to195

a view i by Ki and Ei = {Ri,Ti}, where the intrinsic matrix Ki
196
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Figure 2: Three strokes based single part modeling interface. The
first two strokes represent the profile and the third stroke is for
extruding the profile. The red dots indicate the sparse 3D point
around the end points of the drawn strokes.

is a 3 × 3 matrix, Ri a 3 × 3 rotation matrix, and Ti is a 3 × 1197

translation vector. Given a 3D coordinate V = {X,Y, Z}, the198

well-known projection formula can be written as:199

v̄i = P(X,Y, Z) = Ki(RiV + Ti), (1)

where v̄i = {x̄i, ȳi, z̄i} is the homogeneous coordinate of the pro-200

jected pixel coordinate. Afterwards, the 2D pixel coordinate can be201

easily calculated by {xi = x̄i

z̄i
, yi = ȳi

z̄i
}. Given the pixel coordi-202

nate {xi, yi} at a specific view and its globalZ value, we can easily203

derive from Eq.1 that its global {X,Y } coordinates as two linear204

functions of Z:205

X = fX (Z ) = axZ + dx

Y = fY (Z ) = ayZ + dy
(2)

where the coefficients, {ax, ay, dx, dy}, are computed through206

{xi, yi} and the entries of Ki and Fi. For the detailed derivation207

of Eq. (2), please refer to the appendix.208

Fig. 1 illustrates the basic interface and pipeline of our system. The209

transparent cyan shapes are the created mechanical parts, while the210

three red strokes illustrate the basic stroke-based interface to create211

the next part. The 3D point cloud data is reconstructed from multi-212

view images using VisualSFM software [Wu 2015].213

4 Single Part Modeling214

In this section, we describe the interactive part modeling step in-215

cluding its user interface, depth value calculation and the paramet-216

ric model of the gear tooth to add details to the generalized cylinder.217

4.1 3D Part Generation Pipeline from Images218

We use three steps to create the 3D shape of a single part. First,219

the user selects a proper view where the part to be constructed is220

mostly visible. The view selection can be done by selecting an221

image or navigating through the 3D point cloud data. Second, the222

user needs to decide whether the part should be constructed directly223

based on the sparse point cloud data, or constructed by snapping to224

the surface and/or the edges of already constructed parts. Third, the225

user draws the base profile and sweeping axis to construct the part226

shape.227

Simple primitives: Simple primitives such as generalized cylinder228

and cube shapes are supported in our system. We adopt the stroke229

interface similar to [Chen et al. 2013], where the first two consecu-230

tive strokes are used to specify the base profile, and the third stroke231

serves as the main axis for the sweeping operation. The places to232

draw the strokes are selected from the silhouette of the part in the233

image. As shown in Fig. 2, the three straight strokes {S1, S2, S3}234

are connected to each other, and we denote the four end points of235

the three strokers as {e1, e2, e3, e4}.236

We further allow the base profile to be a free-form, non-uniform B-237

Spline curve to model parts with complex shapes [Cao et al. 2014].238

See Fig. 4 for an example of the modeling of a crank in the image.239

In this case, we allow the user to draw the first two stokes to specify240

the plane for the free-form base profile. There could also exist very241

thin parts in a mechanism, for example, the two thin rectangles be-242

sides the piston cylinder (see Fig. 1). Our system allows the user to243

only draw the base profile, and the third dimension is only extruded244

with a user-specified thickness parameter through the third stroke.245

Some parts might be decomposed into several sweeping surfaces to246

reduce the modeling time. In that case, we allow user to group these247

decomposed sweeping surfaces into one part to ease the following248

motion parameter estimation.249

Derivation of Z values for stroke end points: The end points of250

the first two strokes define the base profile. For a cylinder, the first251

stroke is supposed to define the diameter of the base circle, and the252

end point e3 of the second stroke indicates a point on the circle. We253

then have the perpendicular relationship between two edges −−→e1e3254

and−−→e2e3 in 3D. IfZ1 andZ2 for e1 and e2, respectively, are known,255

the Z3 for e3 can be determined via the following perpendicular256

condition:257

−−→e1e3 · −−→e2e3 =(fX(Z3)− fX(Z1)) ∗ (fX(Z3)− fX(Z1))

+ (fY (Z3)− fY (Z1)) ∗ (fY (Z3)− fY (Z1))

+ (Z3 − Z1) ∗ (Z2 − Z1) = 0

(3)

Eq. 3 is a quadratic function of Z3, and our approach picks its so-258

lution closest to Z1 in the local coordinate system of the selected259

view. For Z1 and Z2, we require the user to draw stroke end points260

on the corresponding points computed from multi-view images,261

where the Z values can be easily determined. In the case that only262

Z1 is known, we assume Z2 has the same value in the local coordi-263

nate system of the selected view (Fig. 2). The Z values of a cube264

can also be estimated through the perpendicular condition between265

the first and second strokes.266

Snapping operations: Parts in a mechanism are often attached to267

each other. We thus introduce a new concept of snapping opera-268

tions to exploit this relationship to obtain accurate placements of269

the parts, which would help to resolve the ill-conditioned inverse270

projection from 2D points in an image to 3D points. The 3D surface271

and/or edge for the snapping operations can be determined manu-272

ally or automatically by checking whether the drawn base profile is273

inside the 2D region of the created parts. Our system supports the274

following two types of snapping operations.275

• 3D object snapping, defined to snap a part to the surface of276

already created 3D objects. When the user draws strokes to277

specify the base profile of a part, our system detects whether278

the end points of the strokes are on the surface of already279

drawn objects through the OpenGL selection scheme. If so,280

the depth values of the end points are set to be the depth values281

extracted from the Z-buffer at those points.282

• Silhouette snapping, defined to snap a part to the Silhouette283

of created 3D objects. Our system detects whether the end284

points of the drawn strokes are sufficiently close (e.g., below285

a user-specified threshold) to the Silhouette of already drawn286

objects. If so, the depth values of the end points are set to287

the depth value of the point on the silhouette that is closest to288

the drawn end points. The silhouettes of the drawn 3D objects289

are determined through the edge detection from their OpenGL290

rendering result on the current view.291
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Figure 3: Spur gear (a). The profile of its tooth is generated using
the involute shown in (b).

The above 3D object snapping operations are performed prior to292

the silhouette snapping operations in our system. Note that the user293

can manually turn on/off snapping operations when the system per-294

forms wrong snapping operations.295

4.2 Part Details and View Selection296

Part details: Although the combination of primitive shapes and297

the extrusion of free-form profile curves can cover most shapes of298

the mechanical parts in our experiments, it will be tedious for the299

user to model the details of mechanical parts, such as gear tooth,300

using such operations. To address this issue, our system supports301

the use of parametric models to efficiently add geometric details302

to these mechanical parts. Without the loss of generality, we take303

the generation of the tooth shape of spur gears as an example using304

the popular involute method in Mechanics [Slater 2011; Wikipedia305

2015], as illustrated in Fig. 3(b). In our current implementation, the306

tooth number, hight and thickness ratio are manually specified. A307

general rule in mechanism is that the tooth size of two pairing gears308

should be roughly the same to smoothly transfer the motion. Thus,309

for two pairing gears, if the tooth number of one gear is determined,310

then that of the other can be determined accordingly (refer to [Slater311

2011] for details). Our system adopts this rule to save the manual312

efforts in gear chains.313

View selection: In the modeling of a mechanical part from multi-314

view images, the user can select a specific view with the largest315

visibility of the part to handle occlusions. Besides directly select-316

ing images, we also allow the user to rotate the object in 3D view;317

once a 3D view is selected, we can automatically determine its cor-318

responding 2D image by selecting the captured image whose extrin-319

sic matrix is closest to the current 3D view. After view selection, all320

the modeled parts are rendered into the current view to facilitate the321

above operations in part modeling, including stroke drawing and322

snapping operations.323

5 Part Alignment Optimization324

Mechanism objects are typical examples of man-made objects, and325

their parts typically conform to global alignment constraints, such326

as parallelism, orthogonality, and attachment constraints [Li et al.327

2011]. In [Chen et al. 2013], these constraints are represented by328

the alignment constraints among the vectors formed by the anchor329

points of a primitive and optimized to improve the quality of the330

modeling results. We also adopt the anchor point idea for global331

alignment constraints but reinforce them to integrate the snapping332

constraints.333

Moreover, since the 3D information required to derive the 3D posi-334

tions of anchor points are nicely initialized by the multi-view recon-335

struction result, our optimization algorithm does not need to start336

with the guess of depth information as in [Chen et al. 2013]. It337

directly optimizes the 3D positions of anchor points according to338

various alignment constraints. In this section, we first briefly de-339

Figure 4: Parts with a free-form base profile. (Left) The first two
strokes are used to define the plane for the base profile. (Middle) A
free-form profile is drawn on the plane. (Right) The third stroke is
used to extrude the base profile to form the part.

scribe the selection of anchor points, and then details the snapping340

constraint and our optimization algorithm.341

Anchor points representation: The anchor points {Cij , j =342

1..mi} for a part Pi are usually selected to be the end points343

of its central axes. In this way, the parallelism constraint be-344

tween parts can then be represented by the parallelism of the cen-345

tral axes of two parts. The anchor points are selected differently346

for different primitive shapes. For a generalized cylinder, we347

Ci1

Ci2

Ci3

Ci4

Ci5

Ci6

use two end points on its main axis as348

the optimization variables while keeping349

its radius constant. Thus, the value of350

m is 2 in this case. For a cube shape,351

we approximate its shape using six an-352

chor points (i.e., m = 6) that stay on353

the three main axes passing through the354

cube center (see the right inset). Thus,355

the cube can be translated and scaled if356

the lengths of the main axes are changed357

while optimizing the positions of its an-358

chor points.359

The six types of constraints between the anchor points of mechani-360

cal parts used in [Chen et al. 2013], including parallelism, orthogo-361

nality, collinear axis endpoints, overlapping axis endpoints, copla-362

nar axis endpoints, and coplanar axes, are also supported in our363

system.364

Snapping constraint: It is used to snap an arbitrary point of a part365

to one plane or edge of another part, as illustrated in Fig. 5, which366

is called point-on-line and point-on-plane constraints in this paper.367

Note that the points to be snapped are not anchor points but usually368

the stroke endpoints drawn by the user in these two constraints.369

The snapping constraint is integrated into the optimization by rep-370

resenting the position of a point, for a part, by the linear combina-371

tion of its anchor points. Specifically, for any point vk
i of a created372

3D part Pi, its 3D coordinates can be represented by the combina-373

tion of its anchor points as vk
i =

∑
j w

k
ijCji. Arbitrary lines and374

planes can also be derived from the 3D positions of anchor points375

subsequently. The coefficients are computed after the single part376

modeling and kept constant in the alignment optimization.377

Such a representation is suitable for generalized cubes with three378

pairs of anchor points, which can be viewed as the local coordinate379

system of the cube. However, it is not applicable to generalized380

cylinders with only one pair of anchor points. We thus only allow to381

apply the point-on-line or point-on-plane constraint at their anchor382

points, and only the top and bottom cap planes of a cylinder are383

allowed to be the planes in the point-on-plane constraint.384

Alignment constraints optimization: The energy function is de-385

signed to maximize the projection accuracy of anchor points while386

preserving the identified constraints. Specifically, it can be formu-387
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Without snapping Our result

Figure 5: Snapping constraint. Left: optimization without snap-
ping constraint. Note the misalignment at the two cubes in the mag-
nified view. Right: our optimization with snapping constraints. The
boundary of two cubes are perfectly snapped.

lated as follows:388

E =
∑
i,j

‖P(Cij ) ∗ z̄ij − [xij , yij ]‖2 + wd

∑
m

‖dist(vm , en)‖2

Subject to : Sil(Cij , Cln) = 0, i, l = 1 · · ·K
Gi(Cij , Cin) = 0, j, n = 1 · · ·mi

(4)

In the first term, z̄ij represents the z component of the projected389

homogeneous coordinate, the projection function P (.) is defined in390

Eq. 1, and [xij , yij ] is the 2D pixel coordinate of its projection on391

the view where the part is drawn. The values of [xij , yij ] are kept392

constant as the initial drawn positions in the optimization proce-393

dure. Therefore, our objective function is designed to minimize the394

variation between the initially drawn parts and the optimized parts:395

the anchor points are only allowed to move around the initial posi-396

tions. Sil represents the identified semantic constraint between two397

parts Pi and Pl, while Gi represents the orthographic constraint398

between a pair of anchor vectors of a cube part Pi.399

The second term is used to minimize the distance of sparse 3D400

points to the reconstructed model, where en is the closest part of401

a 3D point vm. The computation of distance function dist is re-402

lated to the part type. For a generalized cylinder, the distance is403

computed as the absolute difference between the closest distance404

from its central axis and a 3D point and the radius of the cylinder.405

The distance between a 3D point to a cube is just the closest dis-406

tance from the point to any of its six planes. All the distance func-407

tions can be represented by the coordinates of the anchor points.408

If the closest distance between a part and a 3D point is within a409

threshold (default 0.5), or the closest point on a part according to410

the distance function is within the volume of the part, the 3D point411

is deemed to belong to the part. The weight wd is set to be 10−4
412

in our implementation. It is small since we do not want the op-413

timization result to be overweighted by the substantial noise in the414

reconstructed point cloud. The energy function in Eq.4 is optimized415

through augmented Lagrangian method [Jorge and Stephen 2006].416

6 Motion Parameters Estimation417

While we have the basic geometry of the parts in a mechanism af-418

ter the interactive modeling step, it is still not enough to reveal its419

kinematic structure: the interaction between connected parts to re-420

alize the functional design (i.e., target motion) of the mechanical421

Aj Aj

θ

O O

Aj

Figure 6: The computation of rotation angle. Top row: The two
frames of the driving gear in an input motion video. Bottom row:
The two front views of the gear by homography transformation. The
lines connect corresponding feature points, and the rotation angle
can be estimates through dot product between the vectors formed
by connecting the rotation center and the feature points.

assembly. As shown in [Mitra et al. 2013b; Zhu et al. 2012], the422

motion of a mechanism is initialized at the driving part and trans-423

ferred to other parts through its kinematic chain, i.e., the joint types424

between connected parts and the shape of each part. Therefore, we425

design a motion parameter estimation algorithm to determine these426

three kinds of information, namely, the motion of the driving part,427

the joint types between connected parts, and the shape parameters428

of each part. The necessity of re-estimating the shape parameters is429

due to that the shapes of certain occluded parts might be incorrect430

or they might not be sufficiently accurate to reproduce the expected431

motion. For example, as shown in Fig. 1, the slider connected to432

the piston is occluded; therefore, it is difficult to obtain its correct433

length at the interactive modeling step, which would result in inac-434

curate motion as illustrated in Fig. 7.435

We thus use a pre-recorded video clip of the mechanism motion as436

the input of our motion parameters estimation algorithm, which is437

taken at one of the viewpoints used in the aforementioned multi-438

view modeling pipeline. Prior to the optimization, the moving parts439

are detected by checking whether there are optical flow informa-440

tion in their visible projected regions in the first video frame [Sun441

et al. 2010], or manually specified by the user. However, since op-442

tical flow algorithms rely on the accurate correspondence informa-443

tion between video frames, such correspondences may not be suffi-444

ciently robust to be used to recover the rigid motion of mechanism445

parts that typically do not have salient textures. To this end, in our446

approach we first adopt a feature tracking method to obtain the de-447

tailed motion of the driving part by adding a few artificial marks on448

it. Then, the motion parameters of the rest parts are optimized by449

checking whether their projected silhouettes sufficiently match the450

edges at each video frame. The user also need to manually specify451

the driving part to jumpstart the optimization process.452

6.1 Joint Types453

We treat a mechanism as a collection of rigid bodies inter-connected454

to transmit rigid motions, and a joint connects two parts to form a455

kinematic pair. Different joint types impose distinct motion con-456

straints between two parts. Figure 8 summarizes the four main457

types of joints used in our mechanism modeling experiments: fixed458

or welded joints, revolute joints, gear-2-gear contact joints, and459

point-on-line joints.460

Rules-based guess for joint types: As pointed out in [Mitra et al.461
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Figure 7: The stochastic shape parameter optimization results. Left
column: Although the part silhouettes usually match the edge infor-
mation well in the first frame of the video clip of mechanism motion,
the mismatching between the silhouettes and the edge information,
indicated by short red line segments, still occur in the subsequent
video frames due to the inaccurate shape parameters from mod-
eling. Right column: Optimization results. The mismatching is
corrected through shape parameter optimization.

2013b; Xu et al. 2009], the relative motion of two parts connected462

via a joint should be a slippable motion that does not lead to inter-463

penetration of parts for the smooth motion of both parts. It can be464

determined by the intersection surface. Particularly, the slippable465

motion is rotation for a cylindrical intersection surface, correspond-466

ing to revolute joint, and sliding motion for a planar intersection467

surface, called sliding joint in this paper. As such, we can catego-468

rize the joint types based on the slippable motion of the intersection469

surface, and further derive a set of rules to have a reasonable guess470

on the possible joint types as follows:471

• If a generalized cylinder is connected to the surface of an-472

other part, we can soundly guess that the joint between them473

would be an either fixed or revolute joint, since the intersec-474

tion surface in this case is either a generalized cylinder whose475

slippable motion is rotation or a generalized cylinder that can476

be a shaft to transfer the motion so it is fixed to that part.477

• If a generalized cylinder or a slim cube serves as a connecting478

rod and it is connected to the interior of another part, we can479

guess that there is a fixed joint or sliding joint. For the sliding480

joint, its sliding direction is selected as the axis of the local481

coordinate system. Only the line direction that can keep the482

length of the connecting rod constant in motion is feasible,483

which can be tested in kinematic simulation.484

• If two gears are in contact, it is unquestionable there exists a485

gear-2-gear contact joint to transfer the rotation motion from486

one gear to the other.487

• If a cube is placed on a plane, we assume that there is a point-488

on-line joint, and the line directions parallel to the surface are489

two axes of the local coordinate system of the cube, since the490

slippable motion for a plane is sliding.491

To the end, we can obtain a possible, small set of joint types for492

each pair of connected parts, i.e., they serve as the possible values493

of discrete joint types.494

6.2 Motion Estimation of the Driving Part495

It is critical to obtain the accurate motion of the driving part of a496

mechanism, since it actually determines the entire motion of the497

(a) Fixed joint (b) Gear-2-Gear

(c) Revolute joint (d) Sliding joint

Figure 8: Joints. (a) The two parts connected via fixed joint move
in the same direction. (b) The gear-2-gear joint can transfer the
rotational motion from one gear to another. (c) The relative motion
of a revolute joint is rotation. (d) The sliding (point-on-line) joint
indicates that the block can slide on the planar surface of another
part.

mechanism through its kinematic chain. In our algorithm, the mo-498

tion of the driving part is referred to as how it moves in each frame499

of the recorded motion video. For example, the rotational motion500

of the driving part is calculated as the rotation angle at each frame501

with respect to a rotation axis.502

Since the viewpoint of the input video is usually selected to ensure503

parts with large motions are visible, the perspective effect poses504

difficulties in the computation of rotation angles. We choose to505

remove the perspective distortion of the primitive driving part by506

homography transformation and then calculate the rotation angle507

through feature matching [Lowe 2004]. As shown in Fig. 6, the508

circle of the driving gear in the recorded viewpoint is transformed509

to its front view at two consecutive frames i and i + 1. With the510

corresponding feature points, we can calculate the rotation angle511

with respect to the rotation axis as follows:512

θi,i+1= avg
∑
j

arccos

−−→
OAj ·

−−→
OAj∣∣∣−−→OAj

∣∣∣ · ∣∣∣∣−−→OAj

∣∣∣∣ (5)

where Aj and Aj are two corresponding feature points, and O513

is the rotation center which is computed by the projection of the514

3D rotation center of the modeled driving gear. The homography515

transformation is computed by choosing four points on the 3D gear516

and their projections on the front view by setting up a virtual or-517

thographic camera whose principal axis is the rotation axis of the518

gear.519

The initial rotational motion calculated by Eq. 5 can be further op-520

timized by checking how the image regions of the driving gear in521

two consecutive frames are matched. Specifically, we optimize the522

rotational motion using the following objective function:523

Erot =
W∑
m

H∑
n

∣∣∣Iim,n − Ii+1
rot(m,n)

∣∣∣2 (6)

where W and H are the dimension of the gear in the front view,524

and rot(m,n) denotes the function to rotate the image coordinate525

{m,n} at frame i to frame i + 1. To reduce the influence of the526

background to the optimization, we first render the 3D gear at the527

starting video frame and only choose the pixels inside its projected528

region in the optimization. Thus, in Fig. 6, the pixels inside the529

holes of the gear are eliminated from the optimization.530

If the driving motion is a linear translation, we can similarly com-531

pute its 3D motion through corresponding feature points. One extra532

6
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computation is to transform the translation in pixel unit to the cor-533

responding 3D motion on the translation axis based on the known534

projective information.535

6.3 Stochastic Estimation Algorithm536

If the projected silhouettes of each part are close to the matched537

edges in each video frame, we deem the current set of motion pa-538

rameters are sufficiently accurate to reproduce the recorded motion.539

Therefore, the objective function in motion parameters estimation is540

designed to be the summed squared distance between the silhouette541

pixels and their corresponding edge pixels in video frames, denoted542

by silhouette matching energy. It can be formulated as follows:543

E(J ,P) = min
J ,P

n∑
i

(

mi∑
j

‖ẽij(J ,P)− eij‖2/mi) (7)

where J denotes the set of joint types and P denotes the set of part544

shape parameters. The pixel j at frame i on the 2D silhouettes of the545

3D part is denoted by ẽji , and it is computed by extracting the edge546

pixels from the rendered result of the 3D part at each frame with547

the optimized camera settings in multi-view reconstruction. It can548

be easily done by retrieving the frame buffer in OpenGL rendering549

pipeline. Also, eij denotes the edge pixel at video frame i, corre-550

sponding to ẽji . We determine eij in the following two steps: (i)551

we first identify the closest edge pixel in the recorded video frame552

i; (ii) if the closest distance is below a user-specified threshold (10553

pixels in our experiments) and the angle between the normals at554

these two pixels is below a threshold (45◦ in our experiments), the555

closest edge pixel is accepted as the eij . If such a eij cannot be iden-556

tified using the above protocol, ‖ẽij(J ,P)− eij‖ in the above Eq. 7557

is set to a large penalty value (in our experiments it is set to 1000).558

The correspondences between edge pixels and silhouette pixels of559

all the frames except the first frame need to be re-computed once560

the parameters are updated in the optimization process. The first561

frame exception is due to the reason that the drawn parts usually562

well match the boundary edges at the first frame, where the mech-563

anism is not in motion. We extract edges from the video frames564

using the classic canny edge detector [Canny 1986].565

Stochastic optimization: Since it is technically infeasible to con-566

struct an analytical function to map the joint type and part shape567

parameters to the silhouettes of the parts in motion, we minimize568

Eq. 7 with stochastic optimization techniques, where joint types are569

discrete random variables and part shape parameters are continuous570

random variables. Furthermore, due to the reason that joint types571

can be initially guessed with sound prior knowledge in mechanism572

theory (Section 6.1), each joint has a small set of possible types.573

Therefore, we separate the optimization process into two stages:574
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42
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Figure 10: The convergence curves of the simulated annealing al-
gorithm in our approach for two test models: Piston-engine and
robot arm.

the joint types are first exhaustively searched, then, the set of joint575

types with smallest silhouette matching energies are retained for576

the subsequent shape parameter optimization. Specifically, we will577

keep two sets of joint types with two smallest silhouette matching578

energies and optimize the shape parameters for them, respectively,579

if the difference of their silhouette matching energies is below a580

threshold. Finally, the joint types and the shape parameters leading581

to the smallest matching energy are accepted as the optimal solu-582

tion.583

Joint type search: The search for joint types starts with organizing584

the connection graph, with possible loops, of parts into a tree-like585

representation as in [Zhu et al. 2012], where a node denotes a part586

and an edge denotes a joint. First, our algorithm traverses the graph587

in a breadth-first manner to form an array of the nodes, starting from588

the driving part. Second, we detect the shortest loop for the node589

with the smallest array index. The loop can pass driving parts, but590

the driving parts are not included in the formed loop. An edge can591

only appear in a loop once, and we group the parts and the joints in592

the loop into a virtual part. All the nodes in the virtual part should593

be marked as visited and ignored in the subsequent loop detection.594

However, the virtual part itself is put at the position of the node595

with the smallest index and other possible loops can be detected596

from the virtual part again. Third, if there is no possible loops in597

the graph, our algorithm organizes the virtual or real parts into a tree598

representation of the mechanism, choosing the driving part as the599

root node. For a mechanism that might have more than one driving600

parts, the driving parts are specially treated as one grouped driving601

part in current implementation to ease the tree representation.602

A
B

C

D

E
F

Afterwards, our algorithm exhaustively603

searches for joint types on one path from the604

root to a leaf node, and then proceed to other605

paths in the tree while ignoring the joints606

already searched. As illustrated in the right607

inset, supposing each edge has two choices608

of joint type, the joint type search for the609

whole tree can be done in 20 times, since the610

shared edges only need to be searched once.611

For instance, after the path formed by edges612

{A,B,C,D} is searched, later the shared two613

edges (i.e., A, B) do not need to be searched again. In this way, this614

search is more efficient than a purely combinatorial method, which615

is 64 times in this case. For a virtual part, its number of possible616

joint types is the product of the numbers of possible join types of617

all its grouped joints, and it is simulated by the joint constraint618

7
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Figure 12: Left: The robot arm mechanism. Right: Its connection
graph. It parts are labeled by numbers. The dashsed line between
two driving gears indicates that the two driving parts are inter-
connected in this mechanism.

equations and rigidity constraint of each part as in [Coros et al.619

2013]. In the worst case, all the parts might be grouped into one620

virtual part and our search will be degenerated into an exhaustive621

search method.622

Shape parameter optimization:The shape parameters are opti-623

mized through the simulated annealing algorithm, inspired by the624

shape parameter optimization algorithm in [Zhu et al. 2012]. We625

minimize a Boltzmann-like objective function as follows:626

f(x) = exp

(
− Ẽ(P)

T

)
(8)

where Ẽ(P) is the cost function computed for E(J ,P) by fixing627

the joint parameters found at the exhaustive joint type search step.628

A new state P ′ is proposed at each iteration and accepted with a629

probability calculated below.630

α(P ′|P) = min

(
1,
f(P ′)
f(P)

)
. (9)

The annealing parameter T is initialized to be 1, and its value is631

decreased by a factor of 0.9 every 50 iterations.632

Our random shape parameter generation procedure to explore the633

configuration space P works in two steps. First, we pick a mechan-634

ical part and one of its shape parameters with a uniform distribution.635

Second, the new shape parameter is sampled from a Gaussian dis-636

tribution [N (s, δ2
s)], where s is the current value of the parameter,637

and the distribution variance, δs, is set to 1
10

of its value after the638

modeling step, since we assume the modeling result after alignment639

optimization is reasonably close to the optimal shape parameters640

that influence the final motion.641

The shape parameters for each part are illustrated in Fig.9. We al-642

low the driving gear to translate to control the location of the kine-643

matic chain in the mechanism, which is denoted byXY Z in Fig. 9.644

The shape parameters for a gear and a cylindrical rod are the same,645

where the length of the cylinder is denoted by thickness in the case646

of gear. For a crank part, its handle length indicates the distance647

between the slider center and the crank center in the local Z axis,648

which influences the movement of the slider. All the parts in our649

system has a local coordinate system, and we choose the Z axis to650

point to their child parts. Besides the shape parameters, as in [Zhu651

et al. 2012], all the parts are allowed to move along the local Z axis652

of their parent parts.653

Discussion: We only optimize the motion parameters with respect654

to a video clip of the mechanism recorded from a single viewpoint.655

In general, the information from a single view point is insufficient656

Simulated annealing Coordinate descent

Figure 13: Left: the shape parameter optimization result by the
simulated annealing algorithm in our method. Right: the optimiza-
tion result by the coordinate descent method. The red lines indicate
the uncorrected mismatches by the coordinate descent method.

to determine its 3D counterpart. However, in our case since the657

parts in the mechanism move with rigid motion, their motion infor-658

mation can be robustly recovered by the edge features from a single659

viewpoint as investigated in model-based object tracking [Chin and660

Dyer 1986; Kragic and Christensen 2003], given the accurately re-661

constructed camera and 3D shape information. The main reason662

is that the reconstructed part shapes already reasonably match the663

sparse 3D point cloud, and the shape parameters control the global664

shape of the parts, which means their changes directly influence665

how the rigid motion of the parts is matched with that in video.666

7 Experimental Results667

We have implemented the system on a desktop PC with Intel I5668

CPU (2.67G HZ) and 8G memory. The modeling algorithm has669

been tested on six mechanism objects ranging from simple mechan-670

ical toys to small-scale real mechanisms. The statistics of each re-671

constructed mechanism are listed in Table 1 .672

Interactive modeling: We tested our modeling system on four real673

mechanisms, the piston-engine in Fig. 1 and the other three mech-674

anisms, simple three-gears, crank-block and robot arm, in the first675

three rows in Fig. 11. For the two relatively simple mechanisms676

(simple three-gears, and crank-block), their interactive modeling677

time is below 15 minutes. The piston-engine mechanism has 31678

parts, and its crank part is of free-from profile curve. It is relatively679

complicated and its modeling time is around 25 minutes.680

As illustrated in Fig. 12, the robot arm mechanism has 8 parts. A681

four-bar linkage is used to transfer the motion from the two driving682

gears to the longest arm on the top of the mechanism. We write a683

program to control the two electric motors, i.e. the two metal boxes684

in Fig. 12, to drive the two revolute joints of the four bar linkage.685

Therefore, the motion of its two driving parts can be directly deter-686

mined; the motion estimation for the driving parts can be avoided687

for this specific case. The motors and the links between them and688

the driving parts are not included in the modeling results for the689

clarity purpose.690

The last two rows of Fig. 11 illustrate the modeling results of two691

mechanical toys. The first mechanical toy has many parts, but most692

of them are generalized cylinder shapes. Thus, it is relatively simple693

to our modeling system to obtain the 3D modeling result. It takes694

only 20 minutes to obtain the modeling result shown in Fig. 11(b).695

Another mechanical toy modeling result is shown the last row of696

Fig. 11, where the wings of the windmill are modeled by flat cubes.697

Stochastic optimization: Fig. 10 illustrates the convergence of the698

simulated annealing algorithm to search for the shape parameters.699

The number of iterations is approximately proportional to the num-700

8
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(a)                                                                           (b)                                        (c)

Three-gears

Windmill

Crank-block

Clock

Robot arm

Figure 11: Mechanism models created using our system. (a) Multi-view images with sparse point cloud data. (b) Interactive modeling
results. (c) Refined results. The holes and bevels are generated in Blender software within 10 minutes.
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Name #Parts Parts in Motion Modeling Alignment Joint guess Stochastic optimization
Piston-engine 31 10 25m 1.38s 20 198.4s
Three-gears 13 8 12m 0.53s 16 180.3s
Crank-block 11 6 15m 0.39s 8 170.4s
Robot-arm 17 8 20m 0.59s 128 205.7s

Clock 49 12 20m 1.16s 34 228.2s
Windmill 57 15 30m 0.87s 134 210.6s

Table 1: Statistics of the reconstructed models. #parts denotes the total number of the parts of the reconstructed mechanism. All the times
were measured in seconds.

(a)                                                                 
Unit: mm

1.500
1.259
1.017
0.775
0.533
0.292
0.050

-0.050
-0.292
-0.533
-0.775
-1.017
-1.259
-1.500

(b)

Figure 14: Validation results. (a) The visualized distance errors
for the crank-block model. (b) The real windmill toy (left) and its
3D printed replication (right). Please see the accompanying video
for their animation comparison.

ber of shape parameters to be optimized. Therefore, for the piston-701

engine model of 21 shape parameters, the number of its iterations,702

150, before convergence is larger than that for the robot arm mech-703

anism with 15 shape parameters. Fig. 7 illustrates the corrected704

mismatches between the part silhouettes and the part edges in one705

video frame after stochastic optimization.706

We also compared the simulated annealing algorithm used in our707

method with coordinate descent optimization algorithm, where the708

gradient of each shape parameter is numerically computed. The709

reason we chose coordinate descent method over gradient decent710

method is that the geometric constraints between parts are mu-711

tually influenced and thus they are hard to maintain correctly if712

all the shape parameters are optimized simultaneously. Fig. 10713

shows that the simulated annealing method can achieve lower sil-714

houette matching energies than the coordinate descent method for715

this highly nonlinear mapping from part shape parameters to 2D716

silhouettes, due to its ability to avoid the local minimum. Also, the717

side-by-side comparison of the silhouette matching results of the718

robot arm model is shown in Fig. 13.719

Table 1 lists the number of guesses in the exhaustive search of joint720

types. For simple toy examples whose joint types are dominated721

by gear-2-gear contact, the joint type choices for these examples722

are mainly the connection between gears to cylinders for the pur-723

pose of installation. The windmill toy has a long kinematic chain724

of 10 parts through the driving gear to the final motion of windmill,725

which contain 3 gear-2-gear contacts to transmit the motion. In our726

algorithm, the joint type search times for the windmill toy is 128 for727

the chain and 6 for the other 3 joints between gear and installation728

cylinders, totally 134, which can be finished in around 30 seconds729

on our quad-core computer. According to our loop detection algo-730

rithm, all the parts of the robot arm, except #8, are in one loop as731

illustrated in Fig. 12. Since the joints in the loop can only be fixed732

or revolute joints with respect to their cylindrical intersection, 128733

times of joint type search is needed for this model.734

Validation: The validation study, as shown in Fig. 14a, is to illus-735

trate the quantitative error between our modeling result and the real736

mechanism shown in the second row of Fig. 11. The real mech-737

anism was fabricated using a 3D printer, and then we took photos738

to reconstruct its 3D model. Thus, the reconstructed 3D model can739

be directly compared to the original model to study the modeling740

accuracy of our approach. The dimension of the real mechanism is741

180mm × 180mm × 75mm, and the surface approximation er-742

ror as shown in Fig. 14a is small, usually below 1mm. We also743

fabricated a mechanism toy model using a 3D printer to validate744

the motion parameters estimation result. The accompanying video745

shows that the estimated motion parameters are sufficiently accu-746

rate to reproduce very similar motion to the original model.747

8 Discussion and Conclusion748

In this paper, we present a modeling system to create a variety of 3D749

mechanisms from multi-view images. It consists of two main steps:750

The first step is a stroke-based interactive interface to create the751

3D shapes of mechanism parts through the integration of the edge752

information in images and the sparse 3D point cloud reconstructed753

from the multi-view images. Using a pre-recorded video clip of the754

motion of a mechanism, the second step estimates the joint types755

between the parts and further optimizes their shape parameters to756

reproduce the mechanism motion recorded in the video.757

Limitations and future work: The type of a joint or the relative758

motion between a pair of parts is constrained according to the part759

types and their intersection surface in mechanism theory. That is760

the reason we design the rules to guess joint types. However, the761

set of rules in our current system only supports the four main types762

of joints. Ideally, they can be further expanded to cover more types763

of joints in mechanism design, such as geneva and escape mecha-764

nisms. Also, the part type information is manually specified via our765

interactive user interface; an automatic or semi-automatic part type766

recognition algorithm can help to reduce such manual efforts.767

The joint type search in our current method performs exhaustive768

search for every combination of joint types of a virtual part, which769

is less optimized, indeed. We plan to address this issue by develop-770

ing pruning algorithms to remove infeasible combinations as soon771

as possible in the search process. For example, if one joint of a772

four-bar linkage is fixed, then the part rigid constraints are violated773

in motion. Thus, all the joint type combinations that have that fixed774

joint should be avoided. To this end, a smart algorithm to do early775

judges on whether a joint type configuration is feasible would help776

to improve the search efficiency.777

In the future, we also plan to integrate sketch-based interface for the778

modeling of 3D curves and free-form shapes to create more com-779

plex mechanisms, breaking the modeling limitation of generalized780

cylinders or cubes. Furthermore, to improve the accuracy of the re-781

constructed mechanism models, we also plan to investigate how to782

apply our interface to reconstruct parts from dense 3D point clouds783

from a 3D scanner or depth data captured by off-the-shelf depth784
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cameras.785

Appendix786

The Eq. 2 can be derived by the expansion of the Eq. 1. For the787

purpose of clarity, we drop the subscript i, the index of an image,788

in the derivation. Let us first define the entries for the intrinsic K789

and extrinsic rotation matrix R as:790

K =

 f1 0 cx
0 f2 cy
0 0 1

 ,R =

 r11 r12 r13

r21 r22 r23

r31 r32 r33

 (10)

while the translation is denoted by T = {t1, t2, t3}t.791

Given an input 3D point {X,Y, Z}, its 2D projection in homoge-792

neous coordinate {x̄, ȳ, z̄} can be derived according to Eq. 1:793  x̄
ȳ
z̄

 =

 m11X +m12Y +m13Z +m14

m21X +m22Y +m23Z +m24

r31X + r32Y + r33Z + t3

 (11)

where:794

m11 = f1r11 + cxr31,m12 = f1r12 + cxr32

m13 = f1r13 + cxr33,m14 = f1t1 + cxt3

m21 = f2r21 + cyr31,m22 = f2r22 + cyr32

m23 = f2r23 + cyr33,m24 = f2t2 + cyt3

(12)

Since the pixel coordinate {x, y} is related to the homogenous coor-795

dinate by xz̄ = x̄ and yz̄ = ȳ, Eq. 11 implies two linear equations796

of {X,Y }, which can be easily solved to obtain:797

X = fX (Z ) = axZ + dx

Y = fY (Z ) = ayZ + dy
(13)

The coefficients in the equation is detailed as follows:798

ax =
a1
x − a2

x

n1 − n2
, dx =

d1
x − d2

x

n1 − n2

ay =
a1
y − a2

y

n1 − n2
, dy =

d1
y − d2

y

n1 − n2

(14)

where799

a
1
x = (m22 − r32y)(m13 − r33x), a

2
x = (m12 − r32x)(m23 − r33y)

d
1
x = (m22 − r32y)(m14 − t3x), d

2
x = (m12 − r32x)(m24 − t3y)

a
1
y = (m11 − r31x)(m23 − r33y), a

2
y = (m13 − r33x)(m21 − r31y

d
1
y = (m11 − r31x)(m24 − t3y), d

2
y = (m14 − t3x)(m21 − r31y)

n1 = (m11 − r31x)(m22 − r32y), n2 = (m12 − r32x)(m21 − r31y)
(15)
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