
Online Submission ID: Papers 0125

Descent Methods for Elastic Body Simulation on the GPU

(a) A resting dragon (b) A stretched dragon (c) A spiral dragon

Figure 1: The dragon example. This model contains 16K vertices and 58K tetrahedra. Our elastic body simulator animates this example on
the GPU at 30.5FPS, under the Mooney-Rivlin model. Thanks to a series of techniques we developed in this paper, the simulator can robustly
handle very large time steps (such as h = 1/30s) and deformations.

Abstract1

In this paper, we show that many existing elastic body simulation2

approaches can be interpreted as descent methods, under a nonlin-3

ear optimization framework derived from implicit time integration.4

The key question is how to find an effective descent direction with5

a low cost. Based on this observation, we propose a novel gradient6

descent method using Jacobi preconditioning and Chebyshev ac-7

celeration. The convergence rate of this method is comparable to8

that of L-BFGS or nonlinear conjugate gradient. But unlike other9

methods, it requires no dot product operation, making it suitable10

for GPU implementation. To further ensure its convergence and11

performance, we develop a series of step length adjustment, initial-12

ization, and invertible model conversion techniques, all of which13

are compatible with GPU acceleration. Our experiment shows that14

the resulting simulator is simple, fast, scalable, memory-efficient,15

and robust against very large time steps and deformations. It can16

correctly simulate the deformation behaviors of many elastic ma-17

terials, as long as their energy functions are second-order differ-18

entiable and the Hessian matrices can be quickly evaluated. For19

additional speedups, the method can serve as a complement to other20

real-time techniques as well, such as multi-grid.21

Keywords: Nonlinear optimization, Newton’s method, implicit in-22

tegration, gradient descent, Jacobi preconditioning, the Chebyshev23

semi-iterative method, GPU acceleration, hyperelasticity.24

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional25

Graphics—Animation.26

1 Introduction27

Solid materials often exhibit complex elastic behaviors in the real28

world. While we have seen a variety of models being developed to29

describe these behaviors over the past few decades, our ability to30

simulate them computationally is rather limited. Early simulation31

techniques often use explicit time integration, which is known for it-32

s numerical instability problem. A typical solution is to use implicit33

time integration instead. Given the nonlinear force-displacement34

relationship of an elastic material, we can formulate implicit time35

integration into a nonlinear system. Baraff and Witkin [1998] pro-36

posed to linearize this system at the current shape and solve the37

resulting linear system at each time step. Their method is equivalent38

to running one iteration of Newton’s method. Alternatively, we can39

linearize the system at the rest shape and solve a linear system with40

a constant matrix. While this method is fast thanks to matrix pre-41

factorization, the result becomes unrealistic under large deforma-42

tion. To address this issue, Müller and Gross [2004] factored out43

the rotational component from the displacement and ended up with44

solving a new linear system at each time step again. Even if we45

accept formulating elastic simulation into a linear system, we still46

face the challenge of solving a large and sparse system. Unfortu-47

nately, many linear solvers are not fully compatible with parallel48

computing and they cannot be easily accelerated by the GPU.49

In recent years, graphics researchers studied the use of geometric50

constraints and developed a number of constraint-based simulation51

techniques, such as strain limiting [Provot 1996; Thomaszewski52

et al. 2009; Wang et al. 2010], position-based dynamics [Müller53

et al. 2007; Müller 2008; Kim et al. 2012], and shape match-54

ing [Müller et al. 2005; Rivers and James 2007]. While these55

techniques are easy to implement and compatible with GPU accel-56

eration, they offer little control on their underlying elastic models.57

To solve this problem, Liu and collaborators [2013] and Bouaziz58

and colleagues [2014] described geometric constraints as elastic59

energies in a quadratic form. This implies that their technique,60

known as projective dynamics, is not suitable for arbitrary elastic61

model. The recent work by Tournier and colleagues [2015] pro-62

posed to incorporate both elastic forces and compliant constraints63

into a single linear system. This technique is designed for highly64

stiff problems, where the condition number is more important than65

the problem size. It has to solve a linear system at each time step.66

1



Online Submission ID: Papers 0125

We think that a good elastic body simulation method should satisfy67

at least the following three requirements.68

• Generality. A good method should be flexible enough69

to handle most elastic models, if not all. In particular, it70

should be able to simulate hyperelastic models, which use71

energy density functions to describe highly nonlinear force-72

displacement relationships.73

• Correctness. Given sufficient computational resources,74

a good method should correctly simulate the behavior of a75

specified elastic model. In other words, the method is not just76

a temporary one for producing visually appealing animations.77

Instead, it can provide more accuracy for serious applications,78

once hardware becomes more powerful.79

• Efficiency. A good method should be fast enough for real-80

time applications. It should also be compatible with parallel81

computing, so that it can benefit significantly from the use of82

graphics hardware and computer clusters.83

While existing simulation methods can satisfy one or two of these84

requirements, none of them can satisfy all of the three, as far as we85

know. To develop a fast, flexible, and correct elastic body simulator,86

we made a series of technical contributions in this paper.87

• Insights. We show that many recent methods, including88

position-based dynamics, projective dynamics and its accel-89

erated version, can be viewed as descent methods under an90

energy minimization framework. The main question is how91

to find the descent direction, which differs in these methods.92

• Algorithm. We propose to couple Jacobi precondition-93

ing and Chebyshev acceleration with the gradient descent94

method. Our method offers a high convergence rate with a95

low computational cost. To further improve the performance96

of our method, we develop a number of techniques for step97

length adjustment, Chebyshev parameters, and initialization.98

The method is fully compatible with GPU acceleration.99

• Elastic model. Many hyperelastic models were not de-100

signed for highly compressed or even inverted cases. To ad-101

dress this issue, we present a hybrid elastic model by mixing102

hyperelastic energy with projective dynamics energy. Our103

method can efficiently simulate this model, by interpolating104

forces and Hessian matrices on the fly.105

In summary, our descent method handles any elastic model, if: 1)106

its energy function is second-order differentiable; and 2) the Hes-107

sian matrix of its energy function can be quickly evaluated. These108

two conditions can be satisfied by many elastic models, such as109

linear models, spring models, quadratic and cubic bending model-110

s [Bergou et al. 2006; Garg et al. 2007], and hyperelastic models.111

Given enough iterations, our method converges to exact implicit112

Euler integration under a given elastic model. It is robust against113

divergence, even when handling large time steps and deformations114

as Figure 1 shows. The whole method is fast, scalable and has a115

small memory demand. For more speedups, it can also be com-116

bined with multi-grid techniques, many of which were designed for117

hexahedral lattices [Zhu et al. 2010; McAdams et al. 2011b; Dick118

et al. 2011; Patterson et al. 2012] at this time.119

2 Related Work120

The simulation of elastic bodies is an important research topic in121

computer graphics, since the pioneer work by Terzopoulos and col-122

leagues [1987]. Many early techniques use explicit time integration123

schemes, which are easy to implement but require sufficiently small124

time steps to avoid numerical instability. To simulate cloth and thin125

shells using a large time step, Baraff and Witkin [1998] advocated126

the use of implicit time integration schemes. If we assume that elas-127

tic force is a linear function of vertex displacement, the implicit Eu-128

ler scheme forms a linear system with a constant matrix, which can129

be pre-factorized for fast linear solve. Since linear elastic force is130

not rotation-invariant, it can cause unrealistic volume growth when131

an object is under large rotation. Müller and Gross [2004] alleviated132

this problem by factoring out the rotational component in their co-133

rotational method. For more accurate simulation of real-world elas-134

tic bodies, we must use nonlinear elastic force and form the implicit135

scheme into a nonlinear system. A typical solution to a nonlinear136

system is Newton’s method, which needs a large computational cost137

to evaluate the Hessian matrix and solve a linearized system in ev-138

ery iteration. Teran and colleagues [2005] developed a technique to139

evaluate the Hessian matrix under a hyperelastic model, so they can140

use the implicit scheme to handle hyperelastic bodies. Although the141

implicit scheme is more numerically stable, it suffers from artificial142

damping. To overcome this issue, Kharevych and colleagues [2006]143

suggested to use symplectic integrators. Hybrid implicit-explicit144

integration is another technique for reducing artificial damping, as145

Bridson and collaborators [2003] and Stern and Grinspun [2009]146

demonstrated. For a mass-spring system, Su and colleagues [2013]147

investigated how to track and preserve the total system energy over148

time. Daviet and collaborators [2011] studied the development of a149

fast iterative solver for handling Coulomb friction in hair dynamics.150

The force-displacement relationship of a real-world elastic mate-151

rial, such as human skin, is often highly nonlinear. This non-152

linearity makes the material difficult and expensive to handle in153

physics-based simulation. A simple way to generate nonlinear154

effects without using an elastic model is to apply geometric con-155

straints on springs [Provot 1996], or triangular and tetrahedral el-156

ements [Thomaszewski et al. 2009; Wang et al. 2010]. Müller157

and colleagues [2007; 2008; 2012] pushed this idea even further,158

by using geometric constraints to replace elastic forces in a mass-159

spring system. Later they extended this position-based method to160

simulate fluids [Macklin and Müller 2013; Macklin et al. 2014]161

and deformable bodies [Müller et al. 2014]. Similar to position-162

based method, shape matching [Müller et al. 2005; Rivers and163

James 2007] also uses the difference between deformed shapes and164

rest shapes to simulate elastic behaviors. Instead of using geo-165

metric constraints, Perez and collaborators [2013] applied energy166

constraints to produce nonlinear elastic effects.167

An interesting question is whether there is a connection between168

an elastic model and a geometric constraint. Liu and collabora-169

tors [2013] found that the elastic spring energy can be treated as170

a compliant spring constraint. Based on this fact, they developed171

an implicit mass-spring simulator, which iteratively solves a local172

constraint enforcement step and a global linear system step. Bouaz-173

iz and colleagues [2014] formulated this method into projective174

dynamics, by defining the elastic energy of a triangular or tetra-175

hedral element as a constraint. The main advantage of projective176

dynamics is that the system matrix involved in the global step is177

constant, so it can be pre-factorized for fast solve. On the GPU,178

Wang [2015] proposed to solve projective dynamics by the Jacobi179

method and the Chebyshev semi-iterative method, both of which180

are highly suitable for parallel computing. Recently, Tournier and181

colleagues [2015] presented a stable way to solve elastic forces and182

compliant constraints together using a single linear system. Their183

method reduces the condition number of the system, at the cost of184

an increased system size.185

3 Descent Methods186

Let q ∈ R3N and v ∈ R3N be the vertex position and velocity vectors187

of a nonlinear elastic body. We can use implicit time integration to188

2



Online Submission ID: Papers 0125

Algorithm 1 Descent Optimization

Initialize q(0);
for k = 0...K − 1 do

Calculate the descent direction ∆q(k); Step 1
Adjust the step length α(k); Step 2
q̄(k+1) ← q(k) + α(k)∆q(k); Step 3
q(k+1) ← Acceleration

(
q̄(k+1), q̄(k),q(k),q(k−1)); Step 4

return q(K);

simulate the deformation of the body from time t to t + 1 as:189

qt+1 = qt + hvt+1, vt+1 = vt + hM−1f(qt+1), (1)

in which M ∈ R3N×3N is the mass matrix, h is the time step, and190

f ∈ R3N is the total force as a function of q. By combining the two191

equations, we obtain a single nonlinear system:192

M (qt+1 − qt − hvt) = h2f(qt+1). (2)

Since f(q) = −∂E(q)/∂q, where E(q) is the total potential energy193

evaluated at q, we can convert the nonlinear system into an uncon-194

strained nonlinear optimization problem: qt+1 = arg min ε(q),195

ε(q) =
1

2h2 ‖q − qt − hvt‖
2
M + E(q). (3)

Nonlinear optimization is often solved by descent methods, which196

contain four steps in each iteration as Algorithm 1 shows. Their197

main difference is in how to calculate the descent direction from198

the gradient: g(k) = ∇ε(q(k)).199

Gradient descent. The gradient descent method simply sets the200

descent direction as: ∆q(k) = −g(k), using the fact that ε(q) decreases201

fastest locally in the negative gradient direction. While gradient de-202

scent has a small computational cost per iteration, its convergence203

rate is only linear as shown in Figure 2c. Gradient descent can be204

viewed as updating q by the force, since the negative gradient of205

the potential energy is the force. This is fundamentally similar to206

explicit time integration. Therefore, it is not surprising to see the207

step length must be small to avoid the divergence issue.208

Newton’s method. To achieve quadratic convergence, Newton’s209

method approximates ε(q(k)) by a quadratic function and it calcu-210

lates the search direction as: ∆q(k) = −
(
H(k))−1g(k), where H(k) is the211

Hessian matrix of ε(q) evaluated at q(k). Figure 2c shows Newton’s212

method converges the fastest. However, it is too computationally213

expensive to solve the linear system H(k)∆q(k) = −g(k) involved in214

every iteration. To handle one linear system in the armadillo exam-215

ple as Figure 2 shows, the Eigen library needs 0.65 seconds by C-216

holesky factorization, or 2.82 seconds by preconditioned conjugate217

gradient with incomplete LU factorization. Unfortunately, many218

linear solvers cannot be easily parallelized for GPU acceleration.219

Quasi-Newton methods. Since it is too expensive to solve a220

linear system or even just evaluate the Hessian matrix, a natural221

idea is to approximate the Hessian matrix or its inverse. For exam-222

ple, quasi-Newton methods, such as BFGS, use previous gradient223

vectors to approximate the inverse Hessian matrix directly. To avoid224

storing a dense inverse matrix, L-BFGS defines the approximation225

by m gradient vectors, each of which provides rank-one updates to226

the inverse matrix sequentially. While L-BFGS converges slow-227

er than Newton’s method, it has better performance thanks to its228

reduced cost per iteration. Unfortunately, the sequential nature of229

L-BFGS makes it difficult to run on the GPU, unless the problem is230

also subject to box constraints [Fei et al. 2014].231

(a) Ground truth (b) Our result

 M=1
 M=2
 M=4
 M=8
 M=16
 M=32

10-1

10-2

100

R
el

at
iv

e 
Er

ro
r

Time (ms)
0 20 40 60 80

10-1

10-2

100

R
el

at
iv

e 
Er

ro
r

Iterations
0 20 60 80 10040

 Gradient Descent
 Gradient Descent (Preconditioned)
 L-BFGS, m=8
 L-BFGS, m=8 (Preconditioned)
 Nonlinear CG
 Nonlinear CG (Preconditioned)
 Gradient Descent (Accelerated)
 Ours
 Newton's

m
m

Iterations
0 20 60 80 10040

10-1

10-2

100

R
el

at
iv

e 
Er

ro
r

 Projective Dynamics (larger step length)
 Projective Dynamics (same step length)
 Ours

Frames
0 20 40 60 10080

 Constant Position
 Constant Velocity
 Constant Acceleration
 Optimized Step Length

10-1

10-2

100

R
el

at
iv

e 
Er

ro
r

(c) The convergence plot

Figure 2: The outcomes of descent methods applied to the ar-
madillo example. Thanks to preconditioning and momentum-based
acceleration, our method converges as fast as nonlinear conjugate
gradient and it needs a much smaller GPU cost. Our result in (b)
is visually indistinguishable from the ground truth in (b) generated
by Newton’s method. In the plot, we define the relative error as(
ε(q(k))− ε(q∗)

)
/
(
ε(q(k))− ε(q(0))

)
, where q(k) is the result in the k-th

iteration and q∗ is the ground truth.

Nonlinear conjugate gradient (CG). The nonlinear conjugate232

gradient method generalizes the conjugate gradient method to non-233

linear optimization problems. Based on the Fletcher–Reeves for-234

mula, it calculates the descent direction as:235

∆q(k) = −g(k) + z(k)

z(k−1) ∆q(k−1), z(k) = g(k) · g(k). (4)

Nonlinear CG is highly similar to L-BFGS with m = 1. The reason236

it converges slightly faster than L-BFGS in our experiment is be-237

cause our implementation uses the exact Hessian matrix to estimate238

the step length. Intuitively, this is identical to conjugate gradient,239

except that the residual vector, i.e., the gradient, is recalculated in240

every iteration. Nonlinear CG is much more friendly with GPU ac-241

celeration than quasi-Newton methods. But it still requires multiple242

dot product operations, which restrict its performance on the GPU.243

4 Our Descent Method244

In this section, we will describe the technique used in our descent245

method. We will also evaluate their performance and compare them246

with alternatives.247

3



Online Submission ID: Papers 0125

 M=1
 M=2
 M=4
 M=8
 M=16
 M=3210-1

10-2

100
R

el
at

iv
e 

Er
ro

r

Time (ms)
0 20 40 60 80

10-1

10-2

100

R
el

at
iv

e 
Er

ro
r

Iterations
0 20 60 80 10040

 Gradient Descent
 Gradient Descent (Preconditioned)
 L-BFGS, m=8
 L-BFGS, m=8 (Preconditioned)
 Nonlinear CG
 Nonlinear CG (Preconditioned)
 Gradient Descent (Accelerated)
 Ours
 Newton's

m
m

Iterations
0 20 60 80 10040

10-1

10-2

100

R
el

at
iv

e 
Er

ro
r

 Projective Dynamics (larger step length)
 Projective Dynamics (same step length)
 Ours

Frames
0 20 40 60 10080

10-1

10-2

100

R
el

at
iv

e 
Er

ro
r

M
M
M
M
M
M

 Constant Position
 Constant Velocity
 Constant Acceleration
 Optimized Step

Figure 3: The convergence of our method, when using different M
values to delay matrix evaluation. This plot shows that the method
can reach the same residual error within 96 iterations, regardless
of M. So we can use a larger M to reduce the matrix evaluation
cost and improve the system performance.

4.1 Descent Direction248

The idea behind our method is originated from preconditioned con-249

jugate gradient. To achieve faster convergence, preconditioning250

converts the optimization problem into a well conditioned one:251

q̄ = arg min ε
(
P−1/2q̄

)
, for q̄ = P1/2q, (5)

where P is the preconditioner matrix. Mathematically, doing this252

is equivalent1 to replacing g(k) by P−1g(k) in Equation 4. Among all253

of the preconditioners, we favor the Jacobi preconditioner the most,254

since it is easy to implement and friendly with GPU acceleration.255

When an optimization problem is quadratic, conjugate gradient de-256

fines the Jacobi preconditioner as a constant matrix: P = diag(H),257

where H is the constant Hessian matrix. To solve a general non-258

linear optimization problem, if the Hessian matrix can be quickly259

evaluated in every iteration, we can treat P
(
q(k)) = diag(H(k)) as260

the Jacobi preconditioner for nonlinear CG, which now varies from261

iteration to iteration. Such a Jacobi preconditioner significantly262

improves the convergence rate of nonlinear CG, as Figure 2c shows.263

This Jacobi preconditioner can be effectively applied to L-BFGS264

and gradient descent as well. Preconditioning in L-BFGS is es-265

sentially defining diag−1(H(k)) as the initial inverse Hessian esti-266

mate. Meanwhile, preconditioned gradient descent simply defines267

its new descent direction as: ∆q(k) = −diag−1(H(k))g(k). While268

preconditioned gradient descent does not converge as fast as other269

preconditioned methods, it owns a unique and critical property: its270

convergence rate can be well improved by momentum-based tech-271

niques. So we propose to formulate our basic method as accelerat-272

ed, Jacobi preconditioned gradient descent. Figure 2 demonstrates273

that the convergence rate of our method is comparable to that of274

preconditioned nonlinear CG, and our result is visually similar to275

the ground truth after 96 iterations.276

Why is our method special? While both Jacobi precondition-277

ing and momentum-based acceleration are popular techniques, it278

is uncommon to see them working with gradient descent. There279

are reasons for this. The use of Jacobi preconditioning destroys280

the advantage of gradient descent in requiring no matrix evalua-281

tion. Meanwhile, Chebyshev acceleration is effective only when the282

problem is mildly nonlinear [Gutknecht and Röllin 2002]. So our283

method is not suitable for general nonlinear optimization problems.284

Fortunately, it works well with elastic body simulation.285

Convergence and performance. The calculation of our de-286

scent direction has two obvious advantages. First, the diagonal287

1The calculation of z(k) should be updated as: z(k) = g(k) · P−1g(k).

 M=1
 M=2
 M=4
 M=8
 M=16
 M=32

10-1

10-2

100

R
el

at
iv

e 
Er

ro
r

Time (ms)
0 20 40 60 80

10-1

10-2

100

R
el

at
iv

e 
Er

ro
r

Iterations
0 20 60 80 10040

 Gradient Descent
 Gradient Descent (Preconditioned)
 L-BFGS, m=8
 L-BFGS, m=8 (Preconditioned)
 Nonlinear CG
 Nonlinear CG (Preconditioned)
 Gradient Descent (Accelerated)
 Ours
 Newton's

m
m

Iterations
0 20 60 80 10040

10-1

10-2

100

R
el

at
iv

e 
Er

ro
r

 Projective Dynamics (larger step length)
 Projective Dynamics (same step length)
 Ours

Frames
0 20 40 60 10080

10-1

10-2

100

R
el

at
iv

e 
Er

ro
r

M
M
M
M
M
M

 Constant Position
 Constant Velocity
 Constant Acceleration
 Optimized Step

Figure 4: The convergence of our method and projective dynamics.
Although projective dynamics can use a large step length, it cannot
converge as fast as our method.

entries of the Hessian matrix are typically positive. As a result,288

diag−1(H(k)) is positive definite and ∆q(k) ·g(k) < 0. Within a bound-289

ed deformation space, the Hessian matrix of ε(q) is also bounded:290

H � BI. We have:291

ε
(
q(k) + α(k)∆q(k)) ≤ ε(q(k)) + α(k)∆q(k) · g(k) +

B
2

∥∥∥α(k)∆q(k)
∥∥∥2

2
. (6)

So there must exist a sufficiently small step length α(k) that ensures292

the energy decrease and eliminates the divergence issue. Second,293

both the Jacobi preconditioner and gradient descent are computa-294

tionally inexpensive and suitable for parallelization. In particular, it295

requires zero reduction operation.296

The use of the Jacobi preconditioner demands the evaluation of the297

Hessian matrix. This can become a computational bottleneck if it is298

done in every iteration. Fortunately, we found that it is acceptable299

to evaluate the Hessian matrix once every M iterations and use the300

last matrix for the preconditioner. Figure 3 shows that this strategy301

has little effect on the convergence rate, but significantly reduces302

the computational cost per iteration.303

Comparison to projective dynamics. The recent projective304

dynamics technique [Liu et al. 2013; Bouaziz et al. 2014] solves305

the optimization problem by interleaving a local constraint step and306

a global solve step. If we view the local step as calculating the307

gradient and the global step as calculating the descent direction,308

we can interpret projective dynamics as a preconditioned gradient309

descent method as well. Here the preconditioner matrix is constan-310

t, so it can be pre-factored for fast solve in every iteration. But311

this is not the only advantage of projective dynamics. Bouaziz312

and collaborators [2014] pointed out that projective dynamics is313

guaranteed to converge by setting α(k) ≡ 1, if the elastic energy314

of every element has a quadratic form ‖Aq − Bp(q)‖2, where A and315

B are two constant matrices and p(q) is the geometric projection of316

q according to that element. Therefore, projective dynamics does317

not need to adjust the step length in every iteration.318

Projective dynamics was originally not suitable for GPU accel-319

eration. Wang [2015] addressed this problem by removing off-320

diagonal entries of the preconditioner matrix. In this regard, that321

method is highly related to our method. Since both methods can322

handle mass-spring systems, we compare their convergence rates as323

shown in Figure 4. When both methods use the same step length:324

α(k) ≡ 0.5, our method converges significantly faster. This is not325

a surprise, given the fact that our method uses the diagonal of the326

exact Hessian matrix and Newton’s method converges faster than327

original projective dynamics. The strength of projective dynamics328

allows it to use α(k) ≡ 1. But even so, it is still not comparable to329

our method. Interestingly, we do not observe substantial difference330

in animation results of the two methods. We guess this is because331

4



Online Submission ID: Papers 0125

the stiffness in this example is too large. As a result, small energy332

difference cannot cause noticeable difference in vertex positions.333

Comparison to a single linear solve. Figure 2 may leave an334

impression that it is always acceptable to solve just one Newton’s it-335

eration, as did in many existing simulators [Baraff and Witkin 1998;336

Dick et al. 2011]. Mathematically, it is equivalent to approximating337

the energy by a quadratic function and solving the resulting linear338

system. In that case, our method is simplified to the accelerated339

Jacobi method. Doing this has a clear advantage: the gradient does340

not need to be reevaluated in every iteration, which can be costly341

for tetrahedral elements. However, Newton’s method may diverge,342

especially if the time step is large and the initialization is bad. This343

problem can be lessened by using a small step length. But then344

it becomes pointless to waste computational resources within one345

Newton’s iteration. In contrast, gradient descent still converges346

reasonably well under the same situation. So we decide not to use347

quadratic approximation, i.e., one Newton’s iteration.348

Comparison to nonlinear CG. The biggest competitor of our349

method is actually nonlinear CG. Figure 2c shows that the two350

methods have similar convergence rates. So the difference in their351

performance is mainly determined by the computational cost per352

iteration. While the two methods have similar performance on the353

CPU, our method runs three to four times faster than nonlinear CG354

on the GPU. This is because nonlinear CG must perform at least two355

dot product operations, each of which takes 0.41ms in the armadillo356

example using the CUDA thrust library. In contrast, the cost of our357

method is largely due to gradient evaluation, which takes 0.17ms358

per iteration and is required by nonlinear CG as well.359

Similar to our method, nonlinear CG also needs to use a smaller360

step length when the energy function becomes highly nonlinear.361

But unlike our method, it does not need momentum-based accel-362

eration or parameter tuning. So if parallel architecture can alow dot363

products to be quickly handled in the future, it may be preferable to364

use nonlinear CG instead.365

4.2 Step Length Adjustment366

Given the search direction ∆q(k), the next question is how to calcu-367

late a suitable step length α(k). A simple yet effective approach,368

known as backtracking line search, gradually reduces the step369

length, until the first Wolfe condition gets satisfied:370

ε
(
q(k) + α(k)∆q(k)) < ε(q(k)) + c(k)α(k)∆q(k) · g(k), (7)

in which c is a control parameter. The Wolfe condition is straight-371

forward to evaluate on the CPU. However, it becomes problematic372

on the GPU, due to expensive energy summation and dot product373

operations. To reduce the computational cost, we propose to elim-374

inate the dot product by setting c = 0. Intuitively, it means we just375

search for the largest α(k) that ensures monotonic energy decrease:376

ε
(
q(k) + α(k)∆q(k)) < ε(q(k)). We also propose to evaluate the energy377

every eight iterations only. Doing this can waste more iterations,378

before a suitable step length is found. But once it gets found, the379

method needs only a small energy summation cost afterwards.380

Our simulator explores the continuity of α between two successive381

time steps. Specifically, it initializes the step length at time t + 1382

as α = αt/γ, in which αt is the ending step length at time t. After383

that, the simulator gradually reduces α by α := γα, until the Wolfe384

condition gets satisfied. In our experiment, we use γ = 0.7. When385

the step length is too small, our method converges slowly and it is386

not worthwhile to spend more iterations. So if the Wolfe condition387

still cannot be satisfied once the step length reaches a minimum388

value, we simply end that time step and start the next one.389

 No Acceleration
 Nesterov Acceleration
 Chebyshev Acceleration, P=2
 Chebyshev Acceleration, P=4

 Neo-Hookean
 Mooney-Rivlin
 Fung
 St. Venant-Kirchhoff

Stretch Ratio
-100% 100% 300%200%

0.5

1.5

1.0

2.0

-0.5

-1.0

Fo
rc

e 

Force Evaluation
(24ms, 74%)

Matrix Evaluation
(4ms, 11%)

Projective Dynamics: Tetrahedra
(3ms, 9%)

Projective Dynamics: Springs
(2ms, 6%)

Iterations
0 20 60 80 10040

10-1

10-2

100

R
el

at
iv

e 
Er

ro
r

P
P

Figure 5: The convergence of our method with different accelera-
tion techniques. By using multiple phases, the Chebyshev method
can more effectively accelerate the convergence process.

4.3 Momentum-based Acceleration390

An important strength of our method is that it can benefit from391

the use of momentum-based acceleration techniques, such as the392

Chebyshev semi-iterative method [Golub and Van Loan 1996] and393

the Nesterov’s method [Nesterov 2004]. Both methods use the394

“momentum”, the result change between the last two iterations, to395

improve the current search. Because the result change is calculated396

independently for every vertex, both methods are naturally compat-397

ible with parallel computing.398

The two methods differ in how they define and weight the result399

change. The weight used by the Chebyshev method is calculated400

from the gradient decrease rate, which can be tuned for differ-401

ent problems as shown in [Wang 2015]. On the other hand, the402

control parameter used by the Nesterov’s method is related to the403

strong convexity of the Hessian matrix. Since this parameter is404

not easy to find, it is often set to zero for simplicity. Because of405

such a difference, the Chebyshev method typically outperforms the406

Nesterov’s method, as shown in Figure 5. Our experiment shows407

that the Chebyshev method is also more reliable, as long as the408

gradient decrease rate is underestimated. In contrast, the Nes-409

terov’s method may need multiple restarts to avoid the divergence410

issue [O’donoghue and Candès 2015].411

We note that neither of the techniques was designed for general de-412

scent methods. The Chebyshev method was initially developed for413

linear solvers, while the Nesterov’s method was proposed for speed-414

ing up the gradient descent method. Since our method is highly415

related to linear solvers2 and gradient descent, it can be effectively416

accelerated by momentum-based acceleration techniques. Neither417

L-BFGS nor nonlinear CG can be accelerated by these techniques,418

according to our experiment.419

Adaptive parameters. When Wang [2015] adopted the Cheby-420

shev method for accelerating projective dynamics, he defined the421

gradient decrease rate ρ as a constant:422

ρ ≈
∥∥∥∇ε(qk+1)

∥∥∥/∥∥∥∇ε(qk)
∥∥∥. (8)

This is a reasonable practice, since the rate is related to the spectral423

radius of the global matrix, which stays the same through the whole424

simulation process. The simulation of generic elastic materials,425

however, can exhibit more complex convergence behaviors. So if426

a constant ρ is still used, it must be kept at the minimum level to427

avoid oscillation or even divergence issues, especially in the first428

few iterations. To make Chebyshev acceleration more effective,429

we propose to use a varying ρ instead. Specifically, we divide the430

2Our method can also be viewed as solving each Newton’s iteration by
only one iteration of the Jacobi method.

5



Online Submission ID: Papers 0125

 M=1
 M=2
 M=4
 M=8
 M=16
 M=3210-1

10-2

100

R
el

at
iv

e 
Er

ro
r

Time (ms)
0 20 40 60 80

10-1

10-2

100

R
el

at
iv

e 
Er

ro
r

Iterations
0 20 60 80 10040

 Gradient Descent
 Gradient Descent (Preconditioned)
 L-BFGS, m=8
 L-BFGS, m=8 (Preconditioned)
 Nonlinear CG
 Nonlinear CG (Preconditioned)
 Gradient Descent (Accelerated)
 Ours
 Newton's

m
m

Iterations
0 20 60 80 10040

10-1

10-2

100

R
el

at
iv

e 
Er

ro
r

 Projective Dynamics (larger step length)
 Projective Dynamics (same step length)
 Ours

Frames
0 20 40 60 10080

10-1

10-2

100
R

el
at

iv
e 

Er
ro

r

M
M
M
M
M
M

 Constant Position
 Constant Velocity
 Constant Acceleration
 Optimized Step

Figure 6: The convergence of our method using different initial-
ization approaches. This plot shows that the constant acceleration
approach works the best in most cases.

iterations into P phases and assign each phase with its own ρ. We431

can then perform the transition from one phase to another by simply432

restarting the Chebyshev method. The question is: how can we tune433

the phases and their parameters? Our idea is to change the length434

and the parameter of a phase each time, and then test whether that435

helps the algorithm reduce the residual error in pre-simulation. We436

slightly increase or decrease ρ each time by:437

ρnew = 1 − (1 ± ε)(1 − ρ), (9)

in which ε is typically set to 0.05. We accept the change that438

causes the most significant error decrease, and then start another439

tuning cycle. The tuning process terminates once the error cannot440

be reduced any further. Figure 5 compares the convergence rates of441

our method, by using two and four Chebyshev phases respectively.442

4.4 Initialization443

The initialization of q(0) is also an important component in our444

algorithm. It helps the descent method reduce the total energy445

to a low level, after a fixed number of iterations. Intuitively, the446

initialization works as a prediction on the solution qt+1. Here447

we test four different prediction approaches. The first three as-448

sume that vertex positions, velocities, and accelerations are con-449

stant, respectively: qt+1 ≈ q(0) = qt; qt+1 ≈ q(0) = qt + hvt;450

qt+1 ≈ q(0) = qt + hvt + ηh(vt − vt−1). We use the parameter η451

to damp the acceleration effect, which is typically set to 0.2. The452

fourth approach assumes that vertices move in the vt direction with453

an unknown step distance d: q(0) = qt + dvt. We then optimize d by454

minimizing a quadratic approximation of ε(qt + dvt):455

d = arg min
d

{
ε(qt) + (dvt) · ∇ε(qt) +

1
2

(dvt) ·H(qt)(dvt)
}
, (10)

which can be solved as a simple linear equation. This is similar to456

how the conjugate gradient method determines the optimal step in457

a search direction.458

Figure 6 compares the effects of the four approaches on the con-459

vergence of our method, over a precomputed sequence with 100460

frames. It shows that the optimized step approach does not outper-461

form the constant acceleration approach in most cases, even though462

it is the most complex one. Because of this, our system chooses the463

constant acceleration approach to initialize q(0) by default. We note464

that Figure 6 illustrates the errors during a single frame only. These465

errors can be accumulated over time, causing slightly larger differ-466

ences in simulation results. These differences are often manifested467

as small artificial damping artifacts, as shown in our experiment.468

5 Nonlinear Elastic Models469

Our new descent method can handle any elastic model, if: 1) its470

energy function is second-order differentiable; and 2) the Hessian471

matrix of its energy function can be quickly evaluated. These two472

conditions are satisfied by many elastic models, such as spring mod-473

el under Hooke’s law, quadratic or cubic bending models [Bergou474

et al. 2006; Garg et al. 2007], and hyperelastic models. In this475

section, we would like to specifically discuss hyperelastic models,476

some of which are not suitable for immediate use in simulation.477

5.1 Hyperelasticity478

Hyperelastic models are developed by researchers in mechanical479

engineering and computational physics to model complex force-480

displacement relationships of real-world materials. The energy481

density function of an isotropic hyperelastic material is typically482

defined by the three invariants3 of the right Cauchy-Green defor-483

mation tensor C = FTF:484

I = tr
(
C
)
, II = tr

(
C2), III = det

(
C
)
. (11)

Here F is the deformation gradient. For example, the St. Venant-485

Kirchhoff model has the following strain energy density function:486

487

W =
s0

2
(I − 3)2 +

s1

4
(II − 2I + 3), (12)

where s0 and s1 are the two elastic moduli controlling the resis-488

tance to deformation, also known as the Lamé parameters. The489

compressible neo-Hookean model [Ogden 1997] defines its strain490

energy density function as:491

W = s0
(
III−1/3 · I − 3

)
+ s1

(
III−1/2 − 1

)
, (13)

in which s0 is the shear modulus and s1 is the bulk modulus. Many492

hyperelastic models can be considered as extensions of the neo-493

Hookean model. For example, the compressible Mooney-Rivlin494

model for rubber-like materials uses the following strain energy495

density function [Macosko 1994]:496

W = s0
(
III−1/3 ·I−3

)
+s1

(
III−1/2−1

)
+s2

(
1
2 III−2/3(I2−II)−3

)
. (14)

To model the growing stiffness of soft tissues, the isotropic Fung497

model [Fung 1993] uses an exponential term:498

W = s0
(
III−1/3 · I −3

)
+ s1

(
III−1/2 −1

)
+ s2

(
es3(III−1/3 ·I−3) −1

)
, (15)

in which s3 controls the speed of the exponential growth.499

Invertible model conversion. A practical problem associated500

with the use of hyperelastic models is that they are not designed for501

highly compressed or inverted cases. As a result, a simulated hy-502

perelastic body can become unnecessarily stiff, or even stuck in an503

inverted shape. A common solution to this problem is to set a limit504

on the compression rate or the stress, as described by Irving and505

colleagues [2004]. Since such a limit will cause C2 discontinuity in506

the deformation energy, we choose not to do so in our system.507

Our solution is to use projective dynamics instead. Bouaziz and508

colleagues [2014] proved that projective dynamics is numerically509

robust, even against inverted cases. Its basic form uses the follow-510

ing energy density function:511

Wproj =
∑3

i=1
(λi − 1)2, (16)

3Tensor invariants can be formulated in other ways. For example, it is
also common to define the second variant as: II = 1

2
(
tr2(C) − tr(C2)

)
. In

this paper, we follow the definition used in [Teran et al. 2005], since we will
use their formula to derive the Hessian matrix later.

6



Online Submission ID: Papers 0125

(a) A deformed box

l = 1

l = 0

(b) Interpolants visualized in red

Figure 7: A deformed box and its interpolants. For the St. Venant-
Kirchhoff model, we set λ+ = 0.5 to address its low resistance
against compression. Even so, only a small number of elements
need to use invertible model conversion.

in which λ1, λ2, and λ3 are the three principal stretches, i.e., the512

singular values of the deformation gradient. Our basic idea is to513

gradually convert a hyperelastic model into projective dynamics,514

when an element gets highly compressed. Let [λ− = 0.05, λ+ =515

0.15] be the typical stretch interval for model conversion to happen516

in our experiment. For every element t in the k-th iteration, we517

define an interpolant l(k)
t as:518

l(k)
t = min

(
1,max

(
0, l(k−1)

t − L,max
i

(
λ+ − λi

)
/
(
λ+ − λ−

)))
, (17)

where l(0)
t is set to 0 and L is typically set to 0.05. The reason we use519

the l(k−1)
t − L term in Equation 17 is to prevent the interpolant from520

being rapidly changed between two time steps, which can cause521

oscillation artifacts in animation. We then formulate the hybrid522

elastic energy density of the element in the k-th iteration as:523

Whybrid
t =

(
1 − l(k)

t

)
Wt + l(k)

t Wproj
t , (18)

where Wt is the hyperelastic energy density of element t. According524

to Equation 18, we calculate the total contribution of element t to525

the Jacobi preconditioner as:526

Pt
(
q(k)) = diag

((
1 − l(k)

t
)
H(k)

t + l(k)
t AT

t At

)
, (19)

where H(k)
t is the Hessian matrix of Wt and AT

t At is the constant ma-527

trix of element t used by projective dynamics. It is straightforward528

to implement model conversion described in Equation 19, thanks529

to the structural similarity between our algorithm and GPU-based530

projective dynamics developed by Wang [2015]. We note that the531

interpolant is defined for every element. This allows most elements532

to maintain the original hyperelastic model, even when we use a533

larger λ+ as Figure 7 shows.534

6 Implementation and Results535

(Please watch the video for more examples. We will release our536

code and demos to facilitate the dissemination of this work.) We im-537

plemented and tested our system on both the CPU and the GPU. Our538

CPU implementation used the Eigen library (eigen.tuxfamily.org).539

The CPU tests ran on a single core of an Intel i7-4790K 4.0GHz540

processor. The GPU tests ran on an NVIDIA GeForce GTX TITAN541

X graphics card with 3,072 cores. The statistics and the timings of542

our examples are provided in Table 1. Our examples typically use543

h = 1/30s as the time step and run 96 iterations per time step. The544

only exception is the dress example, which divides each time step545

into 8 substeps and executes 40 iterations per substep.546

CPU GPU GPU
Name #vert #ele Cost Cost FPS

Dragon (Fig. 1) 16K 58K 6.75s 32.8ms 30.5
Armadillo (Fig. 2) 15K 55K 6.18s 31.4ms 31.8

Box (Fig. 10) 14K 72K 7.12s 37.6ms 26.6
Dress (Fig. 4) 15K 44K 1.35s 26.6ms 37.6

Double helix (Fig. 9) 13K 41K 4.72s 27.5ms 36.4
Double helix (Fig. 9) 24K 82K 9.67s 38.5ms 26.0
Double helix (Fig. 9) 48K 158K 19.8s 65.4ms 15.3
Double helix (Fig. 9) 96K 316K 38.8s 12.2ms 8.2

Table 1: Statistics and timings of our examples. The computational
time depends on the number of tetrahedra and iterations.

 No Acceleration
 Nesterov Acceleration
 Chebyshev Acceleration, P=2
 Chebyshev Acceleration, P=4

 Neo-Hookean
 Mooney-Rivlin
 Fung
 St. Venant-Kirchhoff

Stretch Ratio
-100% 100% 300%200%

0.5

1.5

1.0

2.0

-0.5

-1.0

Fo
rc

e 

Force Evaluation
(16.3ms, 52%)

Matrix Evaluation
(1.9ms, 6%)

The Rest
(5.1ms, 16%)

Step Length Adjustment
(8.0ms, 26%)

Iterations
0 20 60 80 10040

10-1

10-2

100

R
el

at
iv

e 
Er

ro
r

P
P

Figure 8: The Breakdown of the computational time. This pie chart
reveals that force evaluation is the most expensive step.

GPU implementation. In our GPU implementation, we handle547

each iteration in two steps. In the first step, we evaluate the forces548

and the matrices of every element. We use the fast method proposed549

by McAdams and colleagues [2011a] for singular value decompo-550

sition. To evaluate the Hessian matrix of a hyperelastic model, we551

adopt the co-rotational scheme developed by Teran and collabo-552

rators [2005]. Once we obtain the results, we distribute them to553

the four vertices using atomic CUDA operations. In the second554

step, we calculate the descent direction, adjust the step length, and555

finally update vertex positions by Chebyshev acceleration. Our step556

length adjustment scheme needs the total system energy, which is557

computed by one CUDA thrust reduction operation.558

Both air damping and viscous damping can be easily integrated into559

our system. Let the air damping force be:560

fair(q) = −
c
h

(q − qt), (20)

in which c is the air damping coefficient. The corresponding damp-561

ing energy is − c
2h ‖q − qt‖

2 and its Hessian matrix is − c
h I. Viscous562

damping can be implemented in a similar way, by taking the adja-563

cency into consideration. Both air damping and viscous damping564

can make the Hessian matrix more diagonally dominant and reduce565

the condition number of the optimization problem. So to fully566

demonstrate the stability of our system, we typically turn damping567

off in our experiment. The observed energy loss effect is mainly568

caused by implicit time integration.569

Our system can handle collisions in two ways. It can model col-570

lisions by repulsive potential energies and add them into the total571

energy. Alternatively, it can treat collisions as position constraints572

and enforce them at the end of each time step. Although the second573

approach requires smaller time steps, it can simulate static frictions574

more appropriately. So we use it for handling cloth-body collisions575

in the dress example.576

Performance evaluation. Our algorithm is not attractive on the577

CPU as shown in Table 1, since forces and matrices must be evalu-578

ated multiple times. But thanks to the parallelization of tetrahedron579

7



Online Submission ID: Papers 0125

(a) Using 41K tetrahedra (b) Using 82K tetrahedra

(c) Using 158K tetrahedra (d) Using 316K tetrahedra

Figure 9: The double helix example. This example indicates
that our method can handle high-resolution meshes without overly
stretching artifacts. All of the results use 96 iterations per time step.

threads, it can run in real time on the GPU. Figure 8 provides a580

typical breakdown of the computational time spent on solving a581

single time step. It shows that the total cost depends heavily on the582

force evaluation step and the step length adjustment step. Although583

matrix evaluation is also expensive, it contributes only 6 percent584

of the cost, after avoiding matrix evaluation in every iteration as585

discussed in Subsection 4.1.586

To reveal the scalability of our algorithm, we simulate a double he-587

lix example at four resolutions. Table 1 shows that the computation-588

al cost is almost linearly proportional to the number of tetrahedra as589

expected. The high-resolution result in Figure 9d does not exhibit590

any overly stretching artifact, which is a common issue in position-591

based dynamics. Nevertheless, if computational resource permits,592

we still recommend the use of more iterations for high-resolution593

meshes, to reduce residual errors and artificial damping artifacts.594

Model analysis. To evaluate the simulated behaviors of different595

hyperelastic models, we design a box example where the bottom596

face is fixed and the top face is loaded by stretching, compression,597

or twisting forces, as Figure 10 shows. Here we use the same s0598

and s1 for the neo-Hookean model, the Mooney-Rivlin model, and599

the Fung model. So the Mooney-Rivlin model and the Fung model600

behave stiffer than the neo-Hookean model, due to additional terms601

in their strain energy density functions. From our experiment, we602

found that the St. Venant-Kirchhoff model is more difficult to han-603

dle, because of its low resistance against compression. Although604

we can address this problem by using a larger λ+ to make invertible605

model conversion earlier, it is still difficult to tune the stiffness of606

projective dynamics, since low stiffness cannot fix inverted ele-607

ments while high stiffness can cause oscillation between the two608

models. An alternative solution is to use isotropic strain limit-609

ing [Thomaszewski et al. 2009; Wang et al. 2010]. But that requires610

more iterations or smaller time steps, as shown in our experiment.611

Figure 11 plots out the relationship between the stretch ratio of612

the box and the uplifting force applied on the top face. The na-613

ture of our simulator guarantees that its result is consistent with614

the stress-strain relationship specified by each hyperelastic model,615

under elastostatic situations. In particular, the stiffness of the Fung616

model grows more rapidly than that of the neo-Hookean model or617

the Mooney-Rivlin model. Meanwhile, the force is almost a cubic618

function of the stretch ratio under the St. Venant-Kirchhoff model.619

Limitations. Our method can robustly handle high stiffness and620

high nonlinearity, at the expense of a lower convergence rate. So621

if the method does not use enough iterations, it can cause various622

artifacts. For example, if bending elasticity is significantly stiffer623

(a) Neo-Hookean (b) Mooney-Rivlin (c) Fung (d) StVK

(e) Neo-Hookean (f) Mooney-Rivlin (g) Fung (h) StVK

(i) Neo-Hookean (j) Mooney-Rivlin (k) Fung (l) StVK

Figure 10: The box example. Our simulator can robustly and effi-
ciently simulate the stretching, compression, and twisting behaviors
of boxes, under different hyperelastic models.

than planar elasticity, it can cause cloth to be overly stretched.624

Meanwhile, if stiff elastic energy dominates gravitational energy, it625

can cause deformable bodies to fall slowly. Certain elastic models,626

such as the St. Venant-Kirchhoff model, do not offer sufficient627

stiffness against compression. In that case, the method will have628

difficulty in avoiding inverted elements and oscillation artifacts at629

the same time. The initialization approach under the constant ac-630

celeration assumption can also cause small oscillation artifacts, if631

the parameter η is not sufficiently small. The whole idea behind632

our method is based on the implicit time integration scheme, so633

it suffers from the artificial damping issue. Finally, we still need634

additional mechanisms for self collision detection.635

7 Conclusions and Future Work636

In this paper, we show how to improve the gradient descent method637

by Jacobi preconditioning and Chebyshev acceleration, for solving638

the nonlinear optimization problem involved in elastic body simula-639

tion. While the convergence rate of our method is similar to that of640

nonlinear conjugate gradient, it requires zero dot product operation.641

This characteristics allows it to run efficiently and robustly on the642

GPU, after applying step length adjustment, initialization, model643

conversion techniques.644

Since force evaluation is the bottleneck of our simulator, we will645

investigate possible ways to reduce its cost, especially the cost spent646

on singular value decomposition. We are also interested in finding647

better ways for handling step lengths and inverted elements. Poten-648

tial solutions should have minimal impact on the simulation perfor-649

mance. Another interesting research direction we plan to explore650

is to couple our method with multi-grid techniques. The design651

of our method does not prevent it from using other parallelizable652

preconditioners. So we would like to know whether the method653

8



Online Submission ID: Papers 0125

 Neo-Hookean
 Mooney-Rivlin
 Fung
 St. Venant-Kirchhoff

10-2

10-3

R
el

at
iv

e 
Er

ro
r

Frames
0 20 40 60 10010-4

80

 Single Phase
 Three Phases

Iterations
0 16 32 48 64

10-1

10-2

100

R
el

at
iv

e 
Er

ro
r

Stretch Ratio
-100% 100% 300%200%

0.5

1.5

1.0

2.0

-0.5

-1.0

Fo
rc

e 

 Constant Position
 Constant Velocity
 Constant Acceleration
 Optimized Distance

Force Evaluation
(24ms, 74%)

Matrix Evaluation
(4ms, 11%)

Projective Dynamics: Tetrahedra
(3ms, 74%)

Projective Dynamics: Springs
(2ms, 74%)

Figure 11: The force-displacement curves generated by the box
example. These curves are consistent with the stress-strain rela-
tionships of the underlying hyperelastic models.

can work with multi-color Gauss-Seidel preconditioners as well.654

Finally, we will study the use of our idea in solving other simulation655

problems, such as material and shape design.656

References657

Baraff, D., and Witkin, A. 1998. Large steps in cloth simula-658

tion. In Proceedings of the 25th annual conference on Computer659

graphics and interactive techniques, ACM, New York, NY, US-660

A, SIGGRAPH ’98, 43–54.661

Bergou, M., Wardetzky, M., Harmon, D., Zorin, D., andGrinspun,662

E. 2006. A quadratic bending model for inextensible surfaces.663

In Proc. of SGP, 227–230.664

Bouaziz, S., Martin, S., Liu, T., Kavan, L., and Pauly, M. 2014.665

Projective dynamics: Fusing constraint projections for fast sim-666

ulation. ACM Trans. Graph. (SIGGRAPH) 33, 4 (July), 154:1–667

154:11.668

Bridson, R., Marino, S., and Fedkiw, R. 2003. Simulation of669

clothing with folds and wrinkles. In Proceedings of SCA, 28–670

36.671

Daviet, G., Bertails-Descoubes, F., and Boissieux, L. 2011. A672

hybrid iterative solver for robustly capturing Coulomb friction673

in hair dynamics. ACM Trans. Graph. (SIGGRAPH Asia) 30, 6674

(Dec.), 139:1–139:12.675

Dick, C., Georgii, J., and Westermann, R. 2011. A real-time676

multigrid finite hexahedra method for elasticity simulation using677

CUDA. Simulation Modelling Practice and Theory 19, 2, 801–678

816.679

Fei, Y., Rong, G., Wang, B., andWang, W. 2014. Parallel L-BFGS-680

B algorithm on GPU. Comput. Graph. 40 (May), 1–9.681

Fung, Y.-C. 1993. Biomechanics: Mechanical properties of living682

tissues. Springer-Verlag.683

Garg, A., Grinspun, E., Wardetzky, M., and Zorin, D. 2007. Cubic684

shells. In Proc. of SCA, 91–98.685

Golub, G. H., and Van Loan, C. F. 1996. Matrix computations (3rd686

Ed.). Johns Hopkins University Press, Baltimore, MD, USA.687

Gutknecht, M. H., and Röllin, S. 2002. The Chebyshev iteration688

revisited. Parallel Computing, 28, 263–283.689

Irving, G., Teran, J., and Fedkiw, R. 2004. Invertible finite ele-690

ments for robust simulation of large deformation. In Proceedings691

of SCA, 131–140.692

Kharevych, L., Yang, W., Tong, Y., Kanso, E., Marsden, J. E.,693

Schröder, P., and Desbrun, M. 2006. Geometric, variational694

integrators for computer animation. In Proceedings of SCA, 43–695

51.696

Kim, T.-Y., Chentanez, N., and Müller-Fischer, M. 2012. Long697

range attachments - A method to simulate inextensible clothing698

in computer games. In Proceedings of SCA, 305–310.699

Liu, T., Bargteil, A. W., O’Brien, J. F., and Kavan, L. 2013.700

Fast simulation of mass-spring systems. ACM Trans. Graph.701

(SIGGRAPH Asia) 32, 6 (Nov.), 214:1–214:7.702

Macklin, M., and Müller, M. 2013. Position based fluids. ACM703

Trans. Graph. (SIGGRAPH) 32, 4 (July), 104:1–104:12.704

Macklin, M., Müller, M., Chentanez, N., and Kim, T.-Y. 2014.705

Unified particle physics for real-time applications. ACM Trans.706

Graph. (SIGGRAPH) 33, 4 (July), 153:1–153:12.707

Macosko, C. W. 1994. Rheology: Principles, measurement and708

applications. VCH Publishers.709

McAdams, A., Selle, A., Tamstorf, R., Teran, J., and Sifakis,710

E. 2011. Computing the singular value decomposition of 3x3711

matrices with minimal branching and elementary floating point712

operations. Technical report, University of Wisconsin - Madison.713

McAdams, A., Zhu, Y., Selle, A., Empey, M., Tamstorf, R., Teran,714

J., and Sifakis, E. 2011. Efficient elasticity for character skinning715

with contact and collisions. ACM Trans. Graph. (SIGGRAPH)716

30, 4 (July), 37:1–37:12.717

Müller, M., and Gross, M. 2004. Interactive virtual materials. In718

Proceedings of Graphics Interface, 239–246.719

Müller, M., Heidelberger, B., Teschner, M., and Gross, M. 2005.720

Meshless deformations based on shape matching. ACM Trans.721

Graph. (SIGGRAPH) 24, 3 (July), 471–478.722

Müller, M., Heidelberger, B., Hennix, M., and Ratcliff, J. 2007.723

Position based dynamics. J. Vis. Comun. Image Represent. 18, 2724

(Apr.), 109–118.725

Müller, M., Chentanez, N., Kim, T., andMacklin, M. 2014. Strain726

based dynamics. In Proceedings of SCA, 21–23.727

Müller, M. 2008. Hierarchical position based dynamics. In728

Proceedings of VRIPHYS, 1–10.729

Nesterov, Y. 2004. Introductory lectures on convex optimization:730

A basic course. Applied optimization. Kluwer Academic Publ.,731

Boston, Dordrecht, London.732

O’donoghue, B., and Candès, E. 2015. Adaptive restart for accel-733

erated gradient schemes. Found. Comput. Math. 15, 3 (June),734

715–732.735

Ogden, R. W. 1997. Non-linear elastic deformations. Dover Civil736

and Mechanical Engineering. Dover Publications, Inc.737

Patterson, T., Mitchell, N., and Sifakis, E. 2012. Simulation of738

complex nonlinear elastic bodies using lattice deformers. ACM739

Trans. Graph. (SIGGRAPH Asia) 31, 6 (Nov.), 197:1–197:10.740

Perez, J., Perez, A. G., and Otaduy, M. A. 2013. Simulation of741

hyperelastic materials using energy constraints. In Proceedings742

of the XXIII CEIG (Spanish Conference on Computer Graphics).743

Provot, X. 1996. Deformation constraints in a mass-spring model744

to describe rigid cloth behavior. In Proceedings of Graphics745

Interface, 147–154.746

9



Online Submission ID: Papers 0125

Rivers, A. R., and James, D. L. 2007. FastLSM: Fast lattice shape747

matching for robust real-time deformation. ACM Trans. Graph.748

(SIGGRAPH) 26, 3 (July).749

Stern, A., and Grinspun, E. 2009. Implicit-explicit variational750

integration of highly oscillatory problems. Multiscale Model.751

Simul. 7, 4, 1779–1794.752

Su, J., Sheth, R., and Fedkiw, R. 2013. Energy conservation753

for the simulation of deformable bodies. IEEE Transactions on754

Visualization and Computer Graphics 19, 2 (Feb.), 189–200.755

Teran, J., Sifakis, E., Irving, G., and Fedkiw, R. 2005. Robust756

quasistatic finite elements and flesh simulation. In Proceedings757

of SCA, 181–190.758

Terzopoulos, D., Platt, J., Barr, A., and Fleischer, K. 1987.759

Elastically deformable models. SIGGRAPH Comput. Graph. 21,760

4 (Aug.), 205–214.761

Thomaszewski, B., Pabst, S., and Strasser, W. 2009. Continuum-762

based strain limiting. Computer Graphics Forum (Eurographics)763

28, 2, 569–576.764

Tournier, M., Nesme, M., Gilles, B., and Faure, F. 2015. Stable765

constrained dynamics. ACM Trans. Graph. (SIGGRAPH) 34, 4766

(July), 132:1–132:10.767

Wang, H., O’Brien, J., and Ramamoorthi, R. 2010. Multi-768

resolution isotropic strain limiting. ACM Trans. Graph. (SIG-769

GRAPH Asia) 29, 6 (Dec.), 156:1–156:10.770

Wang, H. 2015. A Chebyshev semi-iterative approach for accelerat-771

ing projective and position-based dynamics. ACM Trans. Graph.772

(SIGGRAPH Asia) 34, 6 (Oct.), 246:1–246:9.773

Zhu, Y., Sifakis, E., Teran, J., and Brandt, A. 2010. An efficient774

multigrid method for the simulation of high-resolution elastic775

solids. ACM Trans. Graph. 29, 2 (Apr.), 16:1–16:18.776

10


