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Scalable Image-based Indoor Scene Rendering with Reflections
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Input Cameras + Global mesh Two-layer meshes + Decomposed images Comparisons

DeepBlending

FVSNeRF

OursImage

Surface Reflection

Decomposed

Fig. 1. Two-layer representation and its rendering result with reflections. Decomposed images: the input image inside the frame is decomposed into surface

and reflection layer images. While state-of-the-art view synthesis methods, such as DeepBlending [Hedman et al. 2018], NeRF [Mildenhall et al. 2020], and

FVS [Riegler and Koltun 2020a], render images with blurred reflections or without reflections at a novel viewpoint in this case, our image-based rendering

pipeline can achieve high-quality rendering result using two-layer meshes and decomposed images. Best viewed with zoom-in.

This paper proposes a novel scalable image-based rendering (IBR) pipeline

for indoor scenes with reflections. Observing that the reconstructed global

mesh of an indoor scene can be used as a geometric prior to improve the

robustness of the reflection decomposition algorithm but still inadequate

for high-quality reflection rendering, we propose a global-mesh-guided al-

ternating optimization algorithm that can construct front surface and back

reflection layer RGB images and meshes, a two-layer representation, to

support the accurate rendering of various reflections effectively. The algo-

rithm alternatively optimizes two-layer RGB images and meshes to minimize

the image composition error to reduce blurred artifacts in view warping.

Moreover, to support densely sampled images required for two-layer mesh

construction and high-frequency reflection rendering, we propose to inte-

grate convolutional neural network (CNN) based super-resolution network

and a motion refinement module to render high-resolution images with

low-resolution textures. The motion refinement module can predict local

offsets to correct errors of mesh-based warping further to improve rendering

quality. Hence, our IBR pipeline can substantially save memory storage and

exploit the multi-scale feature learned by CNN to reduce the artifacts caused

by floating geometries. Experimental results show that our method can pro-

duce highly realistic rendering results with different kinds of reflections, and

the rendering quality is superior to state-of-the-art IBR or neural rendering

algorithms.

CCS Concepts: •Computingmethodologies→ Image-based rendering,

Neural network; Virtual reality.
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1 INTRODUCTION

Image-based rendering (IBR) algorithms have been applied to syn-

thesize photo-realistic images at novel viewpoints for indoor scenes,

which is crucial to immersive virtual reality applications, such as

free-viewpoint navigation of real-estate or museum. However, it is

technically challenging due to two reasons. First, objects in indoor

scenes are often observed near cameras, which results in severe

occlusions and large motion parallax. Second, high-frequency view-

dependent effects, such as sharp highlights and reflections from

reflective or glossy surfaces, frequently occur due to the existence

of mirrors, TV screens, and smooth surfaces of man-made objects.

Layered representations, such as layered depth images [Shade

et al. 1998], multi-plane images (MPI) [Flynn et al. 2019; Zhou et al.

2018], and multi-spherical images (MSI) [Broxton et al. 2020], are

developed to handle occlusions and view-dependent effects in IBR

simultaneously. These representations can be used to store the RGB

and compositing coefficient 𝛼 of reflected scenes in separate layers

and synthesize new images with reflections through layer blend-

ing. In [Sinha et al. 2012], two-layer RGBD images, the front sur-

face and the rear reflection layer RGBD images, are constructed

using the semi-global multi-view stereo algorithm for high-quality

rendering of reflections. However, the construction algorithm of

layered representations is either sensitive to hyper-parameters or

time-consuming. Besides, it is also important to investigate how to

construct the layer representation adaptively to reduce the required
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memory storage. An alternative way for IBR of indoor scenes is to

train neural networks, such as neural radiance fields [Mildenhall

et al. 2020] and deep view synthesis network [Xu et al. 2019], to

model the scene structure from sampled images implicitly. These

networks can render reflective surfaces realistically, but it is com-

putationally expensive to train them to render a large scale indoor

scene in real-time. In addition, it is still challenging for deep neural

networks to model sharp edges of reflections, as shown in Fig. 1.

In this paper, we address the problem of IBR of indoor scenes

with reflections, which involves two issues: robust front surface and

reflection layer decomposition and the balance between memory

storage and the requirement of high-resolution images in virtual

reality applications. The motivation of our IBR pipeline is based on

two observations. First, with the fast development of structure from

motion (SFM) and depth-camera-based 3D scene reconstruction

techniques [Dong et al. 2019; Furukawa and Ponce 2010; Hartley and

Zisserman 2004; Schönberger and Frahm 2016; Xu et al. 2017], the

ability to capture high-quality geometry of an indoor scene has been

significantly improved, even for mirrors and glasses [Whelan et al.

2018]. Therefore, we can obtain the prior geometry for reflective

surfaces through a well-reconstructed global geometry [Hedman

et al. 2018, 2016]. Such prior geometry can be used to improve the

robustness of the reflection decomposition algorithm for reflection

rendering. However, it is still challenging to handle the noises in

the reconstructed prior geometry and camera poses to obtain high-

quality reflection rendering results. Second, the realistic rendering

of high-frequency reflections requires a much denser sampling rate

than that of diffuse scenes. Empirically, we observe that it is nec-

essary to maintain 30% overlap of reflections among neighboring

images to obtain a high-quality reflection decomposition results,

resulting in thousands of captured high-resolution (HR) images used

as texture images in IBR. The memory cost will be unaffordable to

store HR images in GPU memory as pointed out in [Hedman et al.

2016].

These two observations motivate us to design a IBR pipeline with

two novel technical components:

• A global-mesh-guided alternating optimization algorithm for ro-

bust per-view two-layer mesh construction. We construct a two-

layer mesh for each view with reflections, including a surface

mesh representing the RGB and geometry information of front

surfaces and a reflection mesh representing that of the front sur-

faces’ reflected part of a scene. This representation can effectively

support image-based rendering of an indoor scene with reflec-

tions. To obtain such a representation, we project the indoor

scene’s global mesh to each view to initialize the surface layer

mesh and then initialize the reflection layer mesh by the intersec-

tion of reflected rays with the global mesh. However, due to noises

of reconstructed camera poses and geometries, there are errors

in the initialized meshes that will severely downgrade the render-

ing quality of reflections. Thus, combining with the linear image

composition rule in [Sinha et al. 2012] and a multi-view consis-

tency constraint for surface layer RGB images, we propose an

alternating optimization algorithm that can achieve high-quality

reflection-decomposition results at each view. The decomposed

images are used as textures for the constructed two-layer meshes.

Furthermore, we propose a detection-then-decomposition proce-

dure to improve the two-layer mesh representation for reflected

highlights.

• A convolutional neural network (CNN) based super-resolution

(SR) method to render HR images with low-resolution (LR) in-

put images, which can substantially save memory storage. The

network is adapted from the SR network in [Wang et al. 2020],

and we add a motion refinement module to the network to mit-

igate the artifacts, for instance, blurring at object boundaries,

caused by inaccurate geometry. Since the network is also trained

to de-artifact, we term the network as DSRNet hereafter. The

network’s input is the image generated by our view warping

algorithm designed to mitigate the discontinuity artifacts of the

tile-based view warping algorithm in [Hedman et al. 2018, 2016].

Our view warping algorithm is based on camera pose to avoid

discontinuous view selection among neighboring tiles. Coupling

with blending weight decay at image boundaries and occlusion

edges, the rendering results’ smoothness in the free-viewpoint

navigation can be achieved. Furthermore, the surface and reflec-

tion layers in the selected views are warped according to their

meshes separately and then blended at the target viewpoint to

render the reflections correctly.

We have conducted experiments with our IBR pipeline for a va-

riety of indoor scenes, ranging from apartments to offices. Experi-

mental results show that our method can produce highly realistic

rendering results with different kinds of reflections, and the render-

ing quality is superior to state-of-the-art IBR or neural rendering

algorithms.

2 RELATED WORK

IBR can be conducted in a wide spectrum, from no geometry with a

densely arranged camera array to explicit geometry reconstruction

to assist the image-warping-based view synthesis [Gortler et al.

1996; Levoy and Hanrahan 1996; Penner and Zhang 2017]. The

comprehensive survey of IBR techniques can be found in [Shum and

Kang 2000; Zhang and Chen 2004], and the recent deep-learning-

based IBR methods are reviewed in [Tewari et al. 2020]. We review

the literature mostly related to our work in this section.

IBR with geometry: Geometry information is mainly used to

map pixels between images captured at different viewpoints and

determine their visibility. The representation of the geometry in

IBR can be geometric proxies for depth correction, depth images

for view interpolation, visual and opacity hulls for pixel visibil-

ity, and 3D meshes for view-dependent texturing and surface light

fields [Buehler et al. 2001; Chen and Williams 1993; Debevec et al.

1996; Matusik et al. 2000, 2002; Wood et al. 2000]. The 3D geometry

of a scene can be reconstructed from captured images by multi-view

stereo(MVS) algorithms [Furukawa and Ponce 2010; Goesele et al.

2007; Rhemann et al. 2011], and used to guide the image warping

and blending for novel view synthesis [Cayon et al. 2015; Chaura-

sia et al. 2011; Goesele et al. 2010]. Chaurasia et al. [2013] utilized

super-pixels as constraints to obtain per-pixel depth and then warp

images. It significantly reduces the image warping artifacts along

occlusion edges produced by the method in [Chaurasia et al. 2011].
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For indoor scenes, piece-wise planes and Manhattan-world assump-

tion are exploited to reconstruct 3D planes from input images for

image-based indoor scene rendering [Furukawa et al. 2009; Sinha

et al. 2009].

In [Hedman et al. 2016], the reconstructed global geometry is

refined at each view to align depth and image edges. The resulting

per-view meshes are beneficial to handle large occlusions and mo-

tion parallax in IBR. Afterward, Hedman et al. [2018] proposed to

train a deep neural network to blend images warped with per-view

meshes to reduce ghosting artifacts caused by inaccurate geome-

try. These two approaches can reproduce view-dependent effects

to some extent. However, they can not handle reflections because

blending artifacts will be obvious if warping images using reflective

surface geometry only. Our work is inspired by these two works,

but exploit two-layer mesh representation to render indoor scenes

with reflections.

A pioneering work on layered representation used in IBR is lay-

ered depth images (LDI) [Shade et al. 1998]. LDI can be viewed as

a projective volume at a specific viewpoint which stores not only

what is visible in the input image, but also what is behind the visible

surface. It is proposed to handle large occlusions resulting from the

object observed at close distance. Penner et al. [2017] constructed a

projective volume representation from the captured scene images

where each voxel encodes the uncertainty in the MVS and achieved

high quality view synthesis results even at occlusion edges. In [Hed-

man et al. 2017], for the photos captured by a mobile phone or

hand-held DSLR camera, two color-and-depth layer panoramas are

constructed to produce perspective views near captured viewpoints

with motion parallax effects. Broxton et al. [2020] designed a spher-

ical dome to capture light field videos. Each frame is represented

first with multi-sphere images computed by extending the deep

neural network in [Xu et al. 2019] and then simplified to multi-layer

meshes.

Our two-layer mesh representation is used to approximate the

image warping behavior of the surface and its reflections separately,

which is mostly related to reflection decomposition work in [Sinha

et al. 2012]. Kopf et al. [2013] proposed to render the reflections in

gradient domain. The reflection decomposition can also be achieved

according to the motion cue computed with SIFT flow [Li and Brown

2013], homography [Guo et al. 2014], and dense optical flow [Xue

et al. 2015]. In contrast, we leverage the global mesh as a prior to

robustly compute the color and geometry of reflection layers for

scalable indoor scene rendering.While themulti-layeredmesh repre-

sentation in [Broxton et al. 2020] can handle view dependent effects,

their target is to allow as-large-as-possible viewpoint movement

near a given viewpoint in VR videos.

Deep Learning-based IBR: Given captured images, deep learning-

based IBR methods are capable of learning multi-scale features

as the scene representation to facilitate IBR, such as end-to-end

deep stereo for unstructured view interpolation [Flynn et al. 2016],

deep view synthesis for spares images captured under controlled

conditions [Xu et al. 2019], multi-plane images [Mildenhall et al.

2019; Srinivasan et al. 2019; Xu et al. 2019; Zhou et al. 2018], neu-

ral texture [Thies et al. 2019a], and neural volume [Lombardi et al.

2019]. Implicit function representation of a 3D scene can be learned

through coordinate-based multilayer perceptron (MLP) by minimiz-

ing the similarity between the rendered image and the captured

image at the same viewpoint [Sitzmann et al. 2019]. Mildenhall et

al. [2020] trained a rendering network connected with a coordinate-

based MLP using positional encoding to effectively encode the ra-

diance fields, termed as neural radiance fields (NeRF). However,

the training and testing of the NeRF network are time-consuming.

Hence, Liu at al. [2020a] proposed neural sparse voxel fields to prune

unnecessary samples inside the empty space of a 3D scene. The vol-

ume rendering step can also be accelerated by training a network

to approximate the integration [Lindell et al. 2020].

The reconstructed coarse scene geometry can be used as a scaf-

fold to fuse the image features for novel view synthesis. Riegler

et al. [2020a] designed a recurrent encoder-decoder network to

process reprojected features from neighboring views for view syn-

thesis. They improved the view synthesis results further through

view-dependent on-surface feature aggregation [Riegler and Koltun

2020b]. A factored representation of a scene, including point cloud,

semantic structure and latent appearance code, are used in [Meshry

et al. 2019] to render the scene at new viewpoints with different

appearances.

Deep Learning for Image and Video Super-resolution: The

deep learning methods for the task of image super-resolution (SR)

range from the CNN-based method to approaches using Generative

Adversarial Network (GAN) [Dong et al. 2014; Ledig et al. 2017; Rako-

tonirina and Rasoanaivo 2020]. For a comprehensive survey on deep

learning based image super-resolution methods, we refer to the sur-

vey by Wang et al. [Wang et al. 2020]. Temporal coherence of video

super-resolution (VSR) methods can be realized through integrating

motion compensation modules to the SR neural network, such as

multi-resolution spatial transformer module in VESPCN [Caballero

et al. 2017], sub-pixel motion compensation layer in SPMCVSR [Tao

et al. 2017], pyramid, cascading and deformable (PCD) alignment

module in EDVR Wang2019, and recurrent networks to accelerate

the frame warping in video SR [Fuoli et al. 2019; Haris et al. 2019;

Sajjadi et al. 2018].

In game industry, temporal supersampling methods are devel-

oped for the SR of rendered videos [Chaitanya et al. 2017; Edelsten

et al. 2019; Tatarchuk et al. 2014]. Based on the motion vectors be-

tween frames computed using the camera and depth information

provided by the game engine, Xiao et al. [2020] proposed a network

to learn how to blend multiple-frames in the feature space for high-

quality supersampling results. To handle possible warping errors

induced by inaccurate geometry at occlusion edges, we integrate a

motion correction module into this network to align images locally

to improve SR results.

3 OVERVIEW

The developed IBR pipeline consists of three main stages: 1. After

obtaining the global mesh of an indoor scene, the pipeline starts with

constructing per-view two-layer meshes to represent the geometry

of an indoor scene with reflections. 2. A view-warping algorithm is

developed to synthesize the image with low-resolution textures ( 14
resolution of rendered HR images) at the user-specified viewpoint.

3. Such images are fed into the DSRNet to produce the HR rendering
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result. As illustrated in Fig. 1, the constructed two-layer meshes

along with the decomposed surface and reflection layer images can

be used to render highly realistic reflections. Since we perform the

refection decomposition on images before gamma-correction (see

Sec. 4.2 for details), the decomposed images are gamma-corrected

in all our figures for better visualization.

The quality of global mesh G is critical to the success of IBR of

an indoor scene. In our system, we construct the global mesh G

from captured multi-view images using structure frommotion (SFM)

software RealityCapture [CapturingReality 2016]. The images are

captured with a Canon EOS 60D digital single-lens reflex camera. We

convert the raw image (at the resolution of 6, 000 by 4, 000) into the

16-bit tiff format. Empirically, we found that exploiting raw images

in SFM helps the software to calculate camera poses more accurately

(slightly down-sampling the raw image could improve the conver-

gence speed of the pose estimation). While this software provides a

smooth global mesh estimate even in textureless regions [Jancosek

and Pajdla 2011], there are still missing or incorrect geometries due

to the severe occlusions and misalignment of feature points. Thus,

we also consolidate the reconstructed global mesh using RGB-D

data (captured by a Microsoft Kinect4 RGB-D camera) for objects

with strong reflections or under severe occlusions. The geometry

of mirrors and their mask in an image are obtained by the method

in [Whelan et al. 2018]. Additionally, for those light sources that can

not be reconstructed automatically, we allow users to create their

proxy meshes using the sweeping-based modeling method [Chen

et al. 2013]. The consolidated global mesh serves as a prior in the

follow-up processing of layered mesh construction.

Constructing a two-layer mesh for each reflective object in the

scene could be time-consuming. For small-size reflective objects

(around 30x30x30𝑐𝑚3) or reflective surfaces far from the camera

(larger than 3𝑚), the reflection captured in the image is out of focus

and thus blurred. We found it is usually acceptable to render their

view-dependent reflections through image blending. Therefore, we

choose to construct layered meshes for salient and large reflection

planes. To detect reflective surfaces, we first detect 3D planar sur-

faces in the global mesh using the RANSAC method [Schnabel et al.

2007]. For those planes larger than 0.09𝑚2 or its projection in at least

one image is more than 1000 pixels, the set of images to which these

planes are visible will be the target of the reflection detection. Simi-

lar to [Sinha et al. 2012], we calculate multi-view cost volumes for

the images to check whether second local matching-cost minimums,

close to the reflected scene geometry of the plane but different to

the depth of the projection of global geometry, exists in the volume.

If found, the plane should contain reflections. We also run state-of-

the-art image-based mirror detection method in [Lin et al. 2020] to

detect mirrors in images not captured with the device in [Whelan

et al. 2018]. Such images are used as additional textures to improve

rendering quality. With such a reflection detection procedure, more

than 90% reflective planes can be detected. Our system also allows

users to specify reflective surfaces to correct mislabeling manually.

Afterward, using global mesh as a prior, we perform reflection de-

composition (§ 4.2) for each image that has reflections to provide

surface and reflection layer meshes and images as the two-layer

representation.

(a) (b) (c)

(d) (e) (f)
Fig. 2. Depth refinement to align depth and color edges. (a) Initial depth

map. (b) Visualization of normal map. (c) Misalignment between depth and

color edges. (d) Regions between depth and color edges. (e) Refined depth

edges. (f) Constructed surface mesh. Lines in yellowgreen indicates the

depth edges. Please zoom-in to view the details.

The rest of this paper is organized as follows. Sec. 4 describes

the details of per-view depth refinement and the reflection decom-

position in per-view two-layer mesh construction. Sec. 5 describes

the details of two-layer view warping algorithm, and the details

of DSRNet are described in Sec. 6. The implementation details and

experimental results are described in Sec. 7 and Sec. 8 respectively.

Finally, we conclude and discuss limitations and future work in

Sec. 9.

4 PER-VIEW TWO-LAYER MESH CONSTRUCTION

In this section, we will describe the details of surface layer mesh con-

struction and our reflection decomposition algorithm to construct

per-view two-layer meshes for the subsequent rendering.

4.1 Surface Layer Mesh Construction

It starts with rendering the global mesh G at the viewpoint of image

I to obtain a depth image D, and then refine D to align depth and

color images to reduce tearing-apart, ghosting artifacts in IBR. The

surface layer mesh is finally constructed according to the refined

D. In contrast to align depth and color edges using guided median

filter as in [Hedman et al. 2018, 2016], we integrate surface normal

information in both depth edge detection and refinement to assist

the edge alignment.

Depth edge detection: For each pixel in the depth image, we first

calculate its vertex position v𝑖 and normal n𝑖 . Second, we detect

whether there exists a depth edge between two neighboring pixels

𝑝𝑖 and 𝑝 𝑗 by checking their mutual planar distance 𝑑𝑡𝑖 𝑗 , which is :

𝑑𝑡𝑖 𝑗 = max
(��(v𝑖 − v𝑗

)
· n𝑖

�� , �� (v𝑖 − v𝑗
)
· n𝑗

��) (1)

If the calculated 𝑑𝑡𝑖 𝑗 exceeds threshold 𝜆, it indicates a depth edge
as shown in Fig. 2(c). As the remote pixels are less sensitive to depth

change, we set 𝜆 as 0.01 ∗max(1,min(𝑑𝑖 , 𝑑 𝑗 )) where 𝑑𝑖 means the

depth for pixel 𝑖 that is in unit meter in this step. After obtaining

depth edges, we generate a depth refinement mask to restrict the

depth refinement area by rendering frontal parallel square patch of

side length 4𝑐𝑚 at each depth edge pixel to current view as shown

in Fig. 2(d).

Depth refinement: Similar to [Hedman et al. 2018], we exploit

the COLMAP software [Schönberger et al. 2016] to recover the

detailed, pixel-wise depth inside the refinement mask. To this end,

we import the camera poses and 3D points output in the stage
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Fig. 3. The pipeline of reflection decomposition algorithm.

of sparse reconstruction from the RealityCapture software into

the COLMAP, and run the pixel-wise view selection based multi-

view stereo algorithm to obtain the depths inside the refinement

mask. Afterward, if, for a pixel, its photometric depth and geometric

depth consistency differ by more than 5%, the pixel is deemed to be

uncertain, and we discard its depth. Usually, the re-detected depth

edge after refinement is closer to the color edge. Afterward, we

adapt edge-ware interpolation in Epicflow [Revaud et al. 2015] to

compute the depth value 𝑑𝑖 for a pixel 𝑖 between the depth edges

and their closest color edges as follows (Fig 2.e):

𝑑𝑖 =
∑
𝑗 ∈N𝑖

𝑤𝑔 (𝑖, 𝑗)∑
𝑘 𝑤𝑔 (𝑖, 𝑘)

𝑑 𝑗𝑖 , (2)

where the pixels in N𝑖 is the 4-closest neighbors outside the refine-

ment mask of 𝑖 computed using the geodesic distance 𝑑𝑔
(
𝑝𝑖 , 𝑝 𝑗

)
,

and𝑤𝑔 (𝑖, 𝑗) = exp
(
−𝑑𝑔 (𝑖, 𝑗)

)
, and 𝑑

𝑗
𝑖 is the depth computed by the

intersection between the line of sight through pixel 𝑖 and the plane

defined according to the 3D position and normal at pixel 𝑗 . We also

allow users to specify edges on color images if no color edge is close

to a occlusion edge in almost constant color regions.

Converting refined depth to a surface mesh: We initialize a

triangle mesh by creating edges between neighboring depth map

pixels and a diagonal edge to convert each pixel square into two tri-

angles. Then, the mesh is simplified to be the final per-view surface

mesh [Garland and Heckbert 1997]. After simplification, the vertex

number of per-view mesh is less than 40,000 on average. Thus, the

vertex indices can be stored using unsigned short type. Moreover,

we try to preserve mesh edges along depth occlusion edges by in-

creasing their quadric error by a factor of 4 in mesh simplification

to improve the mesh resolution around depth edges for the purpose

of edge anti-aliasing in the rendering. Additionally, the meshes for

image areas covered by reflections are constructed as described in

the next section.

4.2 Reflection Decomposition

We follow the linear image composition rule in [Sinha et al. 2012]

to decompose an image into surface and reflection layer images and

optimize for two-layer meshes. Specifically, the RGB values of a

reference image 𝑘 with reflections can be defined as follows:

I𝑘 = I
0
𝑘 + 𝛽𝑘 I

1
𝑘 (3)

After obtaining the surface layer image I0
𝑘
and the reflection layer

image I1
𝑘
, they can be warped to a neighboring view 𝑘 ′ to form a

warped image Ĩ𝑘′ . Hence, we minimize the difference between Ĩ𝑘′

and I𝑘′ in the reflection decomposition. Given a reference image I𝑘
and its neighboring views, the task of reflection decomposition is

to figure out five quantities, a surface layer image I0
𝑘
, a reflection

layer image I1
𝑘
, a mask 𝛽𝑘 , a mesh of the surface layer M0

𝑘
, and a

mesh of the reflection layer M1
𝑘
. The meshes M0,1

𝑘
are used to warp

I
0
𝑘
and I1

𝑘
to a neighboring view 𝑘 ′ to form a warped image Ĩ𝑘′ using

Eq. 3. The mask 𝛽 is a binary mask on the surface layer to indicate

whether reflections cover a pixel. The mask value is set to 1 for a

covered pixel, otherwise 0.

Our reflection decomposition algorithm exploits the reconstructed

global mesh and multi-view consistency constraints across decom-

posed layers to improve the algorithm’s robustness against noise.

It consists of three stages: two-layer meshM
0,1
𝑘

and 𝛽 mask initial-

ization, per-view two-layer decomposition, and global consistency

optimization to correct the possible errors in the per-view decom-

position stage. The corrected layer images are fed to per-view de-

composition as priors to refine the decomposition result further, as

illustrated in Fig. 3. The reflection decomposition uses images before

gamma correction due to the linear composition rule in Eq. 3. Usu-

ally, two-layer decomposition converges to a good-quality within

two rounds. For reflected highlights with saturated intensities that

break the composition equation in Eq. 3, we propose first to detect

highlights and then rely on global consistency to obtain I
0
𝑘
. In the

following, we describe the details of each stage in our algorithm.

4.2.1 Initialization. Per-image reflection mask 𝛽𝑘 is initialized by

projecting the global plane with detected reflections onto the image

𝑘 . The mask values of pixels covered by the projection are set to

1, otherwise 0. Afterward, we check whether a pixel belongs to

the plane according to each pixel’s distance to the plane and the

difference between their normals. If the distance is below 0.03𝑚 and

the angle between the two normal vectors is below 60◦, we set its

mask value to 1 and 0 otherwise. Since we have refined the depth

map to align depth and color edges, the 𝛽𝑘 after this step will align

to color edges. Note that we use the obtained 𝛽𝑘 to indicate the

reflection plane in the image, but do not optimize for 𝛽𝑘 as in [Sinha

et al. 2012].

As to two-layer mesh initialization for the plane with reflections,

our system first computes a plane 𝑝𝑘 using the refined depth in 𝛽𝑘
and then utilize this plane to set the depth values for pixels inside

𝛽𝑘 . Afterward, we initialize the depth of a reflection layer through

reflections. Specifically, we create a virtual camera by reflecting the

camera of image 𝑘 with 𝑝𝑘 and render a depth map of the indoor

scene using the virtual camera. The rendered depth map inside 𝛽𝑘 is

used to initialize the meshM
1
𝑘
as illustrated in Fig.3. A surface layer
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mesh M
0
𝑘
is directly initialized using the refined depth inside 𝛽𝑘 .

Both meshes are constructed as described in Sec. 4.1 and simplified

to reduce the degree of freedoms in optimization.

We initialize I0,1
𝑘

using Eq. 8, but the median operation is replaced

with minimum to initialize I0
𝑘
and the initial I1

𝑘
is set to I𝑘−I

0
𝑘
. Specif-

ically, we warp the reference view to neighboring views through

initialized two-layer meshes to compute Eq. 8. However, due to

the error in the reconstructed depth and camera poses, there exists

the misalignment between the warped reference image and images

at neighboring views, leading to the degradation of the initialized

I
0
𝑘
and the subsequent decomposition results. To this end, we per-

form as-rigid-as-possible local warping with 40×30 grids [Zhou and

Koltun 2014] to reduce the misalignment in the initialization (Please

refer to Sec.1 in "other supplementary materials" for details).

4.2.2 Alternating optimization for two-layer decomposition. The

objective function developed to estimate two-layer meshesM0,1
𝑘

and

color images I0,1
𝑘

is as follows:

argmin
(R,T)1𝑘 ,M

0,1
𝑘
,I0,1
𝑘

𝐸𝑑 + 𝜆𝑠𝐸𝑠 + 𝜆𝑝𝐸𝑝 , s.t. I0,1
𝑘

(u) ∈ [0..1] , (4)

where u indicates a pixel in the reference image I𝑘 , and (R,T)1𝑘 are

the rotation and translation transformations for M1
𝑘
respectively,

two sets of augmented variables to estimate the global transforma-

tion error of reflection layer in the initialization. The weights 𝜆𝑠 , 𝜆𝑝
are used to balance between the data term 𝐸𝑑 , the smoothness term

𝐸𝑠 , and the prior term 𝐸𝑝 , which are set to 0.04 and 0.01 respectively.

We detail each term in the following:

Data Term: The data term 𝐸𝑑 measures the difference between the

image Î𝑘′ composed by rendering two-layer images and depth maps

at a neighboring viewpoint 𝑘 ′ and the captured photographs I𝑘′ ,

which is:

Edata =
∑

𝑘′ ∈N𝑘

∑
u

‖̂I𝑘′ (u) − I𝑘′ (u)‖
2 (5)

Î𝑘′ (u) = I
0
𝑘′

(
𝜔−1

(
u, D̂0

𝑘

))
+ 𝛽𝑘′

(
𝜔−1

(
u, D̂0

𝑘

))
I
1
𝑘′

(
𝜔−1

(
u, D̂1

𝑘

))
,

where N𝑘 consists of the image 𝑘 and its 6 nearest neighboring im-

ages determined by their camera poses, u′ = 𝜔−1 (u) is the warping

function from 𝑘 ′ to 𝑘 based on depth maps D̂0,1
𝑘

that are obtained

by rendering M0
𝑘
and R

1
𝑘
M

1
𝑘
+ T

1
𝑘
at image 𝑘 ′. We determine N𝑘 by

rendering the reflection layer mesh at reference view to the neigh-

boring views and then checking the depth overlap (depth difference

< 0.05 ∗ min(depth)) in 𝛽𝑘 . The images with more that 30% depth

overlap are sorted according to the camera pose difference (Eq.11),

and top six images are kept to form N𝑘 .

Smoothness term: The smoothness term aims to minimize the gradi-

ent of separated color images I0,1
𝑘

and the mean curvature normal of

M
0,1
𝑘

. We downscale the smoothness weights according to the color

edges.

𝐸𝑠 =
∑
u

(
𝑒−∇I

0,1
𝑘

(u) ‖∇I
0,1
𝑘

(u)‖2
)
+
∑
v

‖HM
0,1
𝑘

(v)‖2 (6)

where v is the vertex of M0,1
𝑘

, and H indicates the Laplacian matrix

computed using cotangent weights [Desbrun et al. 1999].

Prior Term: We add a prior term on I
0,1
𝑘

To make the optimization

stable:

𝐸𝑝
(
I
0,1
𝑘

)
=
∑
u

(
‖I0𝑘 (u)‖2

)
+
∑
u

(
‖I1𝑘 (u)‖2

)
(7)

Optimization: Since the optimization problem is complicated, we

develop an alternating optimization algorithm to minimize the ob-

jective function of Eq. 4 as in [Sinha et al. 2012]. Specifically, after

initializing the mask 𝛽 and depth of surface and reflection layers

at an image 𝑘 , the algorithm alternatively solves for two sets of

variables, namely I0,1
𝑘

and
{
(R,T)1

𝑘
,M0,1

𝑘

}
until convergence. In each

iteration, each set of variables is solved by fixing another set of vari-

ables. Note that the 2D warping field is also used in the first iteration

optimization for I0,1
𝑘

, since two-layer meshes are not optimized in

this stage, and it is necessary to reduce the misalignment between

2D images caused by warping with initial meshes. In the second

iteration optimization of I0,1
𝑘

, we discard the 2D warping field since

the two-layer meshes have been optimized.

4.2.3 Global consistency optimization. It is used to enforce that the

decomposed two-layer color images should be consistent among

neighboring views. Precisely, we first warp the neighboring surface

layer images I0
𝑘′

in mask 𝛽0
𝑘′

to reference view according to D0
𝑘′

and

calculate the median value at each pixel to filter out erroneous RGB

values output by the per-view decomposition. The updated surface

layer images Ĩ0
𝑘
at a pixel 𝑢 is computed as follows:

Ĩ
0
𝑘 (u) = median

({
I
0
𝑘′

(
𝜔−1

(
u,D0

𝑘

))
|𝑘 ′ ∈ N𝑘

})
(8)

The RGB values of reflection layer are updated by enforcing the

linear composition rule in Eq.3:

Ĩ
1
𝑘 (u) =

{
I𝑘 (u) − Ĩ

0
𝑘
(u) if I𝑘 (u) − Ĩ

0
𝑘
(u) − I

1
𝑘
(u) < 0

I
1
𝑘
(u) otherwise

(9)

After both layer images are updated for each view, all the updated

images are fed into per-view reflection decomposition algorithm

for another round of refinement. In this round, the updated surface

and reflection layer images are used as additional priors such that

the global consistency constraint is implicitly enforced. It can be

simply implemented by adding the following two energy terms in

the per-view decomposition:

𝜆𝑔

(∑
u

‖I0𝑘 (u) − Ĩ
0
𝑘 (u)‖2 +

∑
u

‖I1𝑘 (u) − Ĩ
1
𝑘 (u)‖2

)
, (10)

where the weight 𝜆𝑔 is set to 0.05.

4.2.4 Highlights. In indoor scenes, highlights often appear on glossy

surfaces due to their reflection of light sources. However, pixels in-

side highlights have over-saturated intensities, which can not be

modeled by Eq. 3. Therefore, we detect the pixels with highlights as

shown in Fig. 4 to avoid the computation of 𝐸𝑑𝑎𝑡𝑎 for these pixels.

We rely on multi-view consistency to improve the robustness of

highlight detection. First, we leverage mean-shift clustering (spatial

radius equals 8, color radius equals 14) to extract the candidate high-

light clusters wheremost pixels (larger than 90%) have high intensity

(larger than 0.8) for all the captured images. Second, we eliminate
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Fig. 4. The procedure of highlights detection. (a) Reference color image.

(b) Mean-shift clusters. (c) Candidate highlight clusters. (d) Final highlight

clusters.

false positives, such as white papers, by warping candidate highlight

clusters to images neighboring to the reference image according to

surface layer depth D
0
𝑘′
. If the overlap between a cluster and other

clusters in the neighboring images is less than 80% on average, this

cluster is considered as true highlight clusters. This because that

the reflected highlights should not be warped according to surface

layer depth. Fig. 4 shows the highlight detection results.

In reflection decomposition, we first initialize the highlight pixels

in I
0
𝑘
(u) with 0 and I

1
𝑘
(u) with I𝑘 (u), and then optimize for I0,1

𝑘
without detected pixels. However, after the global consistency op-

timization, these 0 values in I
0
𝑘
will be filled by the median RGB

values of corresponding pixels in its neighboring views. The filled

values can be used in the smoothness term and Eq. 10 in the second

round optimization of I0,1
𝑘

. In our implementation, the RGB values of

highlight pixels in I
1
𝑘
will not be modified during global consistency

optimization. The mesh optimization of surface and reflection layer

remains the same, and we directly use the RGB values of highlight

pixels inside I1
𝑘
to compute the 𝐸𝑑𝑎𝑡𝑎 .

4.2.5 Mirrors. As mirrors are perfectly reflective surfaces without

texture, we choose to set I1
𝑘
= I𝑘 and I

0
𝑘
= 0 for the pixels inside a

mirror. Next, instead of optimize D0,1
𝑘

and 𝛽𝑘 , we fixed the D0
𝑘
for

the mirror using the reconstructed 3D mirror plane during scanning

and only optimize for the D1
𝑘
in reflection decomposition. Besides, if

there are opaque materials attached to the mirror, its reconstructed

geometry will be on the 3D mirror plane. We leverage this condition

to set the pixel covered by opaque materials to 0 in 𝛽𝑘 , which means

that there are no reflections inside these pixels. These pixels are not

considered in the reflection decomposition. Besides, to obtain clear

textures of mirrors, we develop an algorithm to remove the camera

reflected in a mirror. Please refer to Sec.2 in "other supplementary

materials" for details.

5 VIEW WARPING USING TWO-LAYER MESH

REPRESENTATION

The view warping algorithm first warps surface and reflection layer

images with a two-layer mesh to a novel view V𝑛 respectively and

then obtain the synthesized image by compositing the warped sur-

face and reflection images using Eq. 3. While tile-based inside-out

IBR algorithm can apply to the rendering of each layer [Hedman

InsideOut Ours

Fig. 5. Compared with InsideOut[Hedman et al. 2016], our view warping

can avoid discontinuity artifacts and produce smoother image blending

result.

et al. 2016], we observe that this pipeline often leads to discontinuity

artifacts as illustrated in Fig. 5. We hypothesize that the disconti-

nuity artifact is related to two factors. First, the view selection of

tile-based rendering is independent in each visible grid cell, which

may result in inconsistent view selection in neighboring cells. Sec-

ond, IBR-cost based weighting scheme is independently computed

at each pixel. This scheme aims to select the closest ray for each

pixel, a principle often used in classical IBR algorithms [Gortler

et al. 1996; Levoy and Hanrahan 1996]. However, it may also result

in non-smooth weight distribution. Therefore, we design a view-

based IBR algorithm to improve the smoothness of the rendering

results. The term view-based indicates that the view selection and

blending weights are based on the camera poses of views relative

to the novel view V𝑛 . The composited images at V𝑛 are fed into

the DSRNet to obtain the final high-resolution rendered images.

The overall two-layer rendering algorithm consists of two steps:

front-most depth map (FMDP) generation and camera-pose-based

view warping. Front-most depth is used in the fuzzy depth test in

the rendering, similar to [Hedman et al. 2016]. We will describe the

details of each step below.

View selection:We define a distance 𝑑𝑘 between a view V𝑘 and the

novel view V𝑛 to facilitate the view selection as follows:

𝑑𝑘 = ∠
(
R
𝑧
𝑘 ,R

𝑧
𝑛

)
∗ 𝜋/180 + 𝜆‖t𝑘 − t𝑛 ‖/‖t𝑛 ‖ (11)

where the camera pose information for a view V𝑘 includes the

optical center t𝑘 and optical axis R𝑧
𝑘
, i.e. the 𝑧 axis of the camera

rotation matrix. This distance focuses on the consistency of the

look-at direction of each camera by only using R
𝑧
𝑛 as a simplified

representation of a camera orientation. Empirically, we found it

worked well when there seldom exist the camera rotations around

its optical axis. The weight 𝜆 equals 0.1, and ∠
(
R
𝑧
𝑘
,R𝑧𝑛

)
is the angle

between R
𝑧
𝑘
and R

𝑧
𝑛 .

after view warping, we choose to

independently select closest views at

eight quadrants of the local coordinate

system of V𝑛 and continue to split each

quadrant into nine sub-regions based

on the pairwise combination of three

angle and three distance intervals (see the right inset). This design
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Fig. 6. The floating geometry at one pixel will be removed if its IBR-cost is

high with respect to the novel view.

can select views surrounding V𝑛 with a more uniform distribution

and is empirically beneficial to the view-blending. With this setting,

there will be 72 views in maximum. However, due to the distance

conditions, it is usually around 20 views selected.

It is also important to maintain the overlap between selected

views for V𝑛 and that for previous view V𝑛−1 to reduce the temporal

flickers. We achieve this by delaying the removal of selected views at

V𝑛−1. Precisely, we first calculate 𝛿∠(R𝑧𝑘 ,R
𝑧
𝑛) and 𝛿 ‖t𝑘−t𝑛 ‖ between

V𝑛 and V𝑛−1, then add them to corresponding sub-region conditions.

The selected views at V𝑛−1 that satisfies the updated conditions are

also selected for V𝑛 .

Front-most Depth Map (FMDP) Generation: The FMDP is used

in fuzzy depth test: If the absolute distance between the depth of a

pixel and the corresponding depth in the FMDP is less than 3cm, this

pixel is deemed to be visible at V𝑛 and will be used in view-blending.

Given the view selection result, we can blend the depth maps

generated by rendering the meshes of these views at V𝑛 to obtain

FMDP. However, floating geometry, i.e., the geometry errors, of

per-view meshes will downgrade the blended depth map’s quality

and lead to incorrect depth test results. Thus, for pixels with large

depth value variances, we utilize per-pixel IBR-cost to reduce the

influence of floating geometry [Hedman et al. 2018]. That is, we first

determine the least IBR-cost from the 3D point projected to the same

pixel of V𝑛 and then only keep those points whose difference of its

IBR-cost to the least IBR-cost is less than a threshold (default 0.17).

The minimal depth of these remained 3D points is then selected to

be the front-most depth. The IBR-cost is defined in the same way as

in [Hedman et al. 2016]:

𝑐 (t𝑘 , t𝑛, x) = ∠ (t𝑘 − x, t𝑛 − x) ∗ 𝜋/180 (12)

+max (0, 1 − ‖t𝑛 − x‖/‖t𝑘 − x‖)

where x is a 3D point. As shown in Fig. 6, this modification can

reduce the influence of floating geometry, especially when depth

edges might be missed in depth-color edge alignment, if there is no

color edges close to the depth edges.

View blending: We render per-view textured two-layer mesh of

selected views at V𝑛 and then blend the rendered surface and reflec-

tion images separately. The fuzzy depth test is first used to remove

hidden triangles before blending, and the blending weight for a

selected view V𝑘 is defined as follows:

𝑤𝑘 = exp(−𝑑𝑘/𝛿) (13)

where 𝛿 is set to 0.033 in our implementation. This weighting scheme

favors those views close to V𝑛 in view warping, and the blending

1
0

Blending weight

2D Surface

(a) The effect of depth edge weight decay

Original image

Warped image w/o weight decay w/ weight decay

(b) Hole filling

Fig. 7. (a)We decay the weights near occlusion edges to improve the smooth-

ness of view blending. (b) We leverage tile-based rendering [Hedman et al.

2016] to render the pixels inside a hole, and also blend the rendering result

with the rest view warping result with weight decay at the hole boundary.

weight is the same for surface and reflection layer images. To avoid

discontinuity artifact, we first apply image feathering, a weight

decay operation often used in image stitching, near the warped

image boundaries [Szeliski 2006]. It is achieved by decreasing the

blending weight𝑤𝑘 smoothly to 0 within 20-pixel distance to the

image boundaries, which is efficient to remove discontinuity caused

by color variation among images. Second, we also exploit weight

decay to decrease the weight of pixels near depth edges (± 5 pixels

distance to the depth edges along edge gradients), since these pixels

might contain noise and be warped to semantically different objects

in the scene, as shown in Fig. 7. The weight decay can reduce the

weight for such pixels, and those warped pixels far from the depth

edge in another view will contribute more to the final RGB value.

All the decayed weights are stored in the alpha channel of mesh

textures.

There might be small-area holes left after the camera-poses-based

view blending, as shown in Fig. 7(a). For pixels inside holes, we

leverage the tile-based rendering method in [Hedman et al. 2016] to

render the voxels and their eight neighbors that intersect with the

surface of these pixels.

6 DSRNET

While per-view depth refinement can significantly improve mesh

quality, there are still inaccurate geometries after edge-aware in-

terpolation. As a result, the rendering results of the two-layer view

warping algorithm inevitably contain a few artifacts, such as ghost-

ing or zigzag at object boundaries. We thus develop the DSRNet

that non-trivially adapt the real-time, super-sampling network (RSS-

Net) in [Xiao et al. 2020] to improve the quality and resolution of

rendered images at a novel view V𝑛 . The overall structure of our

DSRNet is similar to RSSNet, which also has three modules: feature

extraction, re-weighting, and reconstruction. However, the DSRNet

differs from RSSNet in two aspects. First, we add a motion vector

refinement (MVR) module to correct the correspondence errors

caused by inaccurate geometry before re-weighting. It can improve
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Motion Vector Refinement (MVR) 

Skip connection
Feature extraction (current)

Feature reweighting

Reconstruction

Feature extraction (previous)

Motion vector refinementRGBD

RGBD
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32     32      1

Output put ut ut 
Skip connection

64          32          64          64         128      128       64          64         32           3  24

24         24           24           24            2

Backward 
warping 

MVR

Fig. 8. Network architecture of our method. Our network consists of four modules, including feature extraction, re-weighting, reconstruction and motion

vector refinement(MVR). The numbers on each network layer represent the output channels. In reconstruction module, the height (H) and width (W) of output

features are marked under corresponding network layers. The kernel size is 3 × 3 at all layers excepts the first layer of MVR, whose kernel size is 5 × 5 instead.

the correspondence between the previous view V𝑛−1 and V𝑛 . Con-

sequently, the output image quality is improved. Second, although

the DSRNet allows us to store textures of 1/4 resolution, namely

𝐻/2 ×𝑊 /2, of the rendered image of resolution 𝐻 ×𝑊 to save the

memory storage, we found there would be more aliasing artifacts

near occlusion edges if we render 1/4 resolution image in two-layer

view warping algorithm as the input of the DSRNet. Hence, we

choose to construct per-view meshes using high-resolution (HR) im-

ages and preserve mesh edges as-much-as possible on the occlusion

edges during mesh simplification. Meanwhile, during rendering,

with 1/4 resolution textures, we render blurred images of the resolu-

tion 𝐻 ×𝑊 using two-layer view warping algorithm, which reduces

aliasing in the DSRNet output further.

Network Architecture: Fig. 8 shows the architecture of our net-

work. For the three modules in the original RSSNet [Xiao et al.

2020], such as feature extraction, re-weighting, and reconstruction

modules, the convolutional kernel size is 3 × 3 at all layers. The

feature extraction module has three convolutional layers, and each

of them is followed by a nonlinear activation ReLU layer. The re-

weighting module also has three convolutional layers. However, it

uses Tanh as the activation function at its last layer, which is fol-

lowed by a scaling operation to map the output values from (−1, 1)
to (0, 10). The reconstruction module is a 10-layer U-net with three

scales [Ronneberger et al. 2015]. In the reconstruction module, we

use max-pooling for downsampling and bilinear interpolation for

upsampling.

Due to the existence of floating or inaccurate geometry at each

view, simply warping the color image of the previous frame In−1 to

V𝑛 by the per-view mesh might lead to inaccurate correspondence,

resulting in the degradation of the output image. Therefore, the

MVR module is designed to refine the depth-based motion vector

Md used to warp In−1 before the re-weighting module. This module

takes depth-based motion vector Md, color image of current frame

In (rendered at V𝑛 using the two-layer IBR algorithm), previous

frame In−1, and warped previous frame I′
n−1 as input, and aims to

predict offsets to correct the motion vectorsMd:

M𝑟 = M𝑑 +MVR(I𝑛, I𝑛−1, I
′
𝑛−1,M𝑑 ) (14)

where Mr are the refined motion vector. Since MVR is designed for

motion vector fine-tuning, the output of MVR is limited to [−5, 5]
pixels by mapping original MVR output 𝑥 to tanh(𝑥) ∗ 5.

Training Losses: The training loss of our method is same as [Xiao

et al. 2020], which is the weighted combination of structural sim-

ilarity index (SSIM) and perceptual loss. More formally, the total

training loss is as follows:

L (x, x̂) = 1 − SSIM (x, x̂) +𝑤 ·

5∑
𝑖=1

| |conv𝑖 (x) − conv𝑖 (x̂) | |
2
2 (15)

where x and x̂ are the captured ground-truth images and network

output respectively. Here weight𝑤 is used to balance the two losses

and in most of our experiments,𝑤 = 0.1.
As to the MVR module, we use a warping loss to supervise its

training as follows:

L𝑤𝑎𝑟𝑝 = L1
(
G (I𝑛) ,G

(
I
′
𝑛−1

) )
+ L1

(
I𝑛, I

′
𝑛−1

)
(16)

where 𝐿1(·) denotes the L1 Loss and 𝐺 (·) is the Gaussian filter

with 5 × 5 kernels. Here Gaussian Filter is used to smooth the local

gradient and avoid gradient vanishing for not color edge pixels.

7 IMPLEMENTATION DETAILS

Per-view reflection decomposition: Since there should be a large

number of optimization variables to represent surface and reflection

layer RGBD images in Eq. 4, we apply conjugate gradient (CG) with

Polak-Ribiére updates [Nocedal and Wright 2006] to alternatively

solve for I
0,1
𝑘

and D
0,1
𝑘
. During the step to optimize for I

0,1
𝑘
, we

clip the gradient of each pixel to be in the range ([0..1]). In all our

experiments, we fix CG iteration number to be 30 to balance between

the energy reduction and time consumption.

Two-layer IBR Rending: All the mesh textures are stored using

RGBA DXT5 compression format, which also provides the 4:1 com-

pression ratio. The alpha channel is used to store the weight de-

cay near image boundaries and occlusion edges and the mask of

highlight pixels (1 bit packed into the 8bit alpha channel). During

rendering, the highlight pixels will not composite with the surface

layer since it will lead to the degradation of the rendered highlight.

In this case, we ignore the surface layer color and only use the re-

flection layer pixels in the area with detected highlights warped to

the novel view V𝑛 . Each per-view mesh is simplified, and we use

unsigned short to store the vertex indices to reduce storage further.

SR Network Training: We train the SR network with the MVR

module using 512 ∗ 512 random crops from the captured indoor

scene images and set batch size to 8. The optimizer for the training
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Fig. 9. Convergence curve of the alternative optimization algorithm for re-

flection decomposition. The rendering results before and after optimization

are shown in the last two images in second row.

Scenes Area(𝑚2) #Img Img/Mesh Storage(GB)

Hotel Room 7.0 ∗ 4.4 1741 0.55 / 1.89 (1.61+0.28)

Living Room 1 8.2 ∗ 6.3 2289 0.72 / 2.48 (2.17+0.31)

Living Room 2 12.3 ∗ 8.1 2782 0.88 / 3.04 (2.40+0.64)

Meeting Room 1 11.2 ∗ 6.5 1631 0.52 / 1.84 (1.61+0.23)

Meeting Room 2 13.3 ∗ 10.4 998 0.32 / 1.22 (0.88+0.34)

Table 1. Statistics of reconstructed indoor scenes. #Img denotes the num-

ber of total images captured in the scene. Img/Mesh Storage denotes the

memory storage for down-sampled texture images and two-layer meshes.

Numbers in brackets indicate the memory storage for surface and reflection

layer meshes respectively.

is ADAMmethod [Kingma and Ba 2015], and the learning rate is set

to 1 × 10−4 at the beginning and decayed by a factor of 0.95 every

20 epochs. The number of epochs used to train the network is 300.

8 EXPERIMENTS

We have implemented our IBR pipeline on a desktop PC with a

4.20GHz Intel Core i7-7700K CPU and an NVIDIA RTX 2080Ti GPU.

The DSRNet is trained on a GPU server with two NVIDIA RTX

2080Ti GPU cards. The forward inference of the network is acceler-

ated by Nvidia TensorRT [Nvidia 2018] with 16-bit precision. All the

per-view two-layer meshes are stored in GPU memory. We utilize

OpenGL/CUDA interop interface to interchange rendering buffer

and network tensor data at GPU memory directly during online

rendering. Our pipeline’s average running time to render an image

of resolution 1280×960 is 49.1ms, including 30.7ms for view warping

and 18.4ms for the DSRNet inference.

To evaluate our pipeline, we have applied it to render five re-

constructed indoor scenes with different sizes, types, and reflection

scenarios, including one hotel room, two living rooms, and two

meeting rooms (see Table. 1). We train DSRNet separately for each

scene, using 90% of the captured images as the training dataset and

the remaining 10% as the validation set. In this section, we will re-

port the evaluation results of reflection decomposition, DSRNet, and

the rendering result comparisons with state-of-the-art IBR methods.

Please also see the accompanying video for the video comparisons.

Reference image Ours [Sinha et al.2012] [Liu et al. 2020]

Fig. 10. Reflection decomposition comparison.

Alternative optimization without highlight detection

Neighboring images

Reference image

Detection

2nd Iter.

2nd Iter.1st Iter.

1st Iter.

Alternative optimization with highlight detection

Fig. 11. Two-layer decomposition with highlight detection. Red regions on

the top-right of reference image indicate the detected highlights. Without

highlight detection, the highlights in neighboring views will lead to spread-

ing artifacts as shown in the decomposed foreground surface image in top

row.
TV Screen

Mirror

Fig. 12. Reflection decomposition results of a TV screen and a mirror.

8.1 Evaluation of the Reflection Decomposition Algorithm

Fig. 9 illustrates the convergence curve of the alternating optimiza-

tion algorithm for reflection decomposition. The energy defined in

Eq. 4 gradually decreases with each CG iteration when optimizing

for I0,1
𝑘

at the beginning. After 30 iterations, the algorithm contin-

ues with optimizing for M0,1
𝑘

and (R,T)1
𝑘
, leading to the further

decline of the energy function. Usually, the alternating optimization

algorithm converges with two outer iterations to optimize for I0,1
𝑘

alternatively. The red arrow in Fig. 9 is used to emphasize the effect

of the optimization ofM1
𝑘
. It can be seen that the rendering result

using the optimized I
0,1
𝑘

and M
1
𝑘
is sharp and free of misalignment

artifacts in highlights caused by view warping with initialized two-

layer meshes and images. A comparison in Fig. 10 shows that, with

prior geometry, our reflection decomposition result is superior to

the results of reflection removal algorithms based on semi-global

stereo [Sinha et al. 2012] and deep-learning [Liu et al. 2020b]. We

hypothesize that the failure of the algorithm in [Sinha et al. 2012] is

due to the difficulty to reliably estimate the two-layer depth using

semi-global stereo algorithm [Hirschmuller 2008]. Since we do not

capture the images continuously as in videos, it is also challeng-

ing to estimate dense optical flows for surface and reflection layers

required in [Liu et al. 2020b].
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Fig. 13. View warping vs. DSRNet. For each pair, the image on the left is

produced by our view warping algorithm, and the image on the right is

produced by the DSRNet. The blurring and aliasing at object boundaries

are effectively removed by the DSRNet.

w/o w/o w/ow/w/ w/

Fig. 14. The improvement of object boundary rendering quality using the

MVR module. W/: with MVR. W/O: without MVR.

In Fig. 11, we show how the highlight detection influences the

reflection decomposition result. If we use the linear composition rule

in this case, the highlights in neighboring views will lead to artifacts

in the foreground surface image, resulting in a large area of artifacts

in the decomposed surface image. The artifacts are corrected after

ignoring the composition energy terms inside the detected regions

with highlights. The holes inside the highlights of the decomposed

surface image are filled by the global consistency step. Fig. 12 shows

the two-layer image and mesh construction results of a TV screen

and a mirror. Since we enforce the RGB of I0
𝑘
of mirrors to be zero,

a color-less assumption for mirrors, we did not show black I
0
𝑘
for

the mirror. The TV screen’s depth can be scanned with Kinect4 due

to its surface matte. It benefits the initialization of the surface layer

mesh and helps to obtain high-quality reflection decomposition, as

shown in the top-row of Fig. 12.

8.2 Evaluation of DSRNet

After training, the DSRNet can produce sharp, high-quality HR im-

ages at novel viewpoints. As illustrated in Fig. 13, although the im-

ages from view warping are blurred and have alias artifacts around

edges, the image quality can be effectively enhanced by the DSR-

Net. Moreover, Fig. 14 illustrates that the designed MVR module

is beneficial to remove the ghosting artifacts caused by inaccurate

geometries.

Ablation Study:We perform ablation studies to evaluate the influ-

ence of the MVR module and loss terms on the DSRNet. As shown

in Table 2, the network with the MVR module can improve PSNR

values for all our reconstructed scenes and is beneficial to the im-

provement of the SSIM metric. In Fig. 14, we show that the ghosting

artifacts indicated by the red arrows can be corrected after integrat-

ing the MVR module into the DSRNet. Moreover, we remove each

loss term to evaluate its influence on the network. The evaluation

HR mesh + HR input image

HR mesh LR mesh

LR mesh + LR input imageHR mesh + LR input image

Fig. 15. The influence ofmesh and input image resolution to DSRNet. HR/LR

mesh: mesh constructed using high/low resolution depth map. HR/LR input

image: generate high-resolution or low-resolution images with viewwarping.

HR mesh + HR input image leads to better rendering quality. Please also

see accompanying video for the comparison.

W/ MVR W/O MVR

Scene PSNR↑ SSIM↑ PSNR↑ SSIM↑

Hotel Room 33.57106 0.96860 33.20517 0.96856

Living Room 1 31.35471 0.96757 31.35119 0.96785

Living Room 2 30.01572 0.95905 29.43158 0.95892

Meeting Room 1 30.46487 0.98267 29.96584 0.98134

Meeting Room 2 31.37820 0.96296 30.73507 0.96277

Table 2. MVR ablation study

Only VGG Only SSIM SSIM+VGG

PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑

28.13277 0.95896 33.18738 0.96884 33.57106 0.96860

Table 3. Loss term ablation study.

results on the hotel room scene for this ablation study are shown in

Table 3. They verify that both VGG loss and L1 loss are essential to

the quality of the rendered images.

The influence of view warping result on the DSRNet: As de-

scribed in Sec. 6, althoughwe store textures in 1/4 resolution (640x480),

we choose to generate images with original HR (1280x960) resolu-

tion in view-warping to reduce aliasing and flickers near occlusion

edges. In Fig. 15, we show that generating HR images with per-view

meshes constructed with HR images can achieve superior rendering

results. The reason we choose to construct mesh with HR images is

to preserve the edges on occlusion edges. Therefore, the occlusion

edge details of the HR RGBD images can be better preserved, which

facilitates the DSRNet to produce high-quality images. It can be

seen the mesh constructed on LR RGBD images has much fewer

boundary edges, leading to blurring or aliasing artifacts around oc-

clusion edges. Furthermore, we found it is also beneficial to recover

occlusion edge details if generating HR images in view warping.

8.3 Rendering Results and Comparisons

To demonstrate the advantage of our pipeline, we compare our

method against state-of-the-art view synthesis methods, such as In-

sideOut [Hedman et al. 2016],DeepBlending [Hedman et al. 2018],

Neural Rerendering in the Wild (NRW) [Meshry et al. 2019],

LLFF [Mildenhall et al. 2019], NeRF [Mildenhall et al. 2020] and

FVS [Riegler and Koltun 2020a]. For fair comparisons, we use cap-

tured high-resolution images plus our constructed per-view meshes

as the input of InsideOut and DeepBlending. For NRW, we use a
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Fig. 16. Rendering result comparisons with InsideOut [Hedman et al. 2016],DeepBlending [Hedman et al. 2018] ,NRW [Meshry et al. 2019] and FVS [Riegler

and Koltun 2020a].

Scene Metric

Deep

Blending

Inside

Out
NRW FVS Ours

Hotel

Room

PSNR↑ 32.90 31.56 31.11 27.26 33.57

SSIM↑ 0.881 0.880 0.831 0.835 0.968

Living

Room 1

PSNR↑ 31.33 29.99 30.13 25.54 31.35

SSIM↑ 0.875 0.881 0.828 0.833 0.968

Living

Room 2

PSNR↑ 29.04 29.77 27.93 25.32 30.40

SSIM↑ 0.828 0.827 0.785 0.808 0.961

Meeting

Room 1

PSNR↑ 29.86 29.19 25.70 24.61 30.46

SSIM↑ 0.926 0.934 0.875 0.871 0.983

Meeting

Room 2

PSNR↑ 31.70 30.27 29.57 26.38 31.38

SSIM↑ 0.865 0.871 0.802 0.809 0.963

Table 4. Quantitative comparisons.

textured global mesh generated by RealityCapture to render the

input color and depth images. The required semantic map is ob-

tained by segmenting the image with indoor scene class labels using

the network provided by NRW. Furthermore, as our DSRNet is

trained for each scene to improve rendering quality, we also fine-

tune the networks of DeepBlending and FVS for the comparisons.

As shown in Fig. 16, our method outperforms other methods on

Our NeRFLLFF
Fig. 17. Comparisons with LLFF [Mildenhall et al. 2019] andNeRF [Milden-

hall et al. 2020].

the rendering quality of reflections. With the developed reflection

decomposition algorithm and the DSRNet, our system also achieves

sharper rendering results. The quantitative comparisons conducted

on the five reconstructed scenes are shown in Table 4, where our

pipeline achieves the best performance over state-of-the-art meth-

ods on the validation datasets.
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Fig. 17 illustrates the comparisons with LLFF and NeRF. While

these two methods can render high-quality images, it is still chal-

lenging for them to handle the high-frequency signals, such as

reflections and check patterns, resulting in obvious blurring arti-

facts. In contrast, our geometry-based IBR pipeline can produce

sharp images in these challenging cases.

9 CONCLUSIONS AND DISCUSSIONS

We have developed an IBR pipeline for the image-based rendering

of indoor scenes with reflections. It has two main technical compo-

nents: global-mesh-guided robust two-layer mesh construction and

DSRNet based rendering pipeline to save memory storage. We also

design a view-warping algorithm to produce temporally smooth

images during free-viewpoint navigation as the input of DSRNet.

Our pipeline can handle various types of reflections and achieve

high-quality rendering results. Its running time with NVIDIA RTX

2080Ti GPU is below 50ms on average, suitable for interactive virtual

reality applications.

A limitation of our current pipeline is that it can not handle

curved mirrors or reflective surfaces. Empirically, a curved reflec-

tive surface can be approximated by many piece-wise triangles, and

we can construct a reflection layer mesh for each triangle. However,

the memory cost of this simple extension is high, and the rendering

speed is substantially reduced. Rendering an environmentmap using

our IBR pipeline for a curved reflective surface can be an alternative

method to simulate its reflection. Another challenge to our pipeline

is rendering the glasses that have both background transmissions

and reflections. The linear composition rule used in our paper is

only for reflective surface and its reflections. We might need to

extend it to three layers, including transmissions, reflections, and

possible opaque or transparent materials, such as papers or stickers,

on the glasses, to handle the rendering of glasses. Currently, our

rendering pipeline mainly works in RGB space, and the lightweight

DSRNet is selected for the rendering speed. In the future, it would

be interesting to investigate how to integrate feature space repre-

sentation, similar to neural texture [Thies et al. 2019b] and stable

view synthesis [Riegler and Koltun 2020b], into the pipeline to bal-

ance between the rendering speed and the robustness to inaccurate

geometry in IBR.
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