
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

Scalable Image-based Indoor Scene Rendering with Reflections

ANONYMOUS AUTHOR(S)
SUBMISSION ID: 445

Input Cameras + Global mesh Two-layer meshes + Decomposed images Comparisons

DeepBlending

FVSNeRF

OursImage

Surface Reflection

Decomposed

Fig. 1. Two-layer representation and its rendering result with reflections. Decomposed images: the input image inside the frame is decomposed into surface

and reflection layer images. While state-of-the-art view synthesis methods, such as DeepBlending [Hedman et al. 2018], NeRF [Mildenhall et al. 2020], and

FVS [Riegler and Koltun 2020a], render images with blurred reflections or without reflections at a novel viewpoint in this case, our image-based rendering

pipeline can achieve high-quality rendering result using two-layer meshes and decomposed images. Best viewed with zoom-in.

This paper proposes a novel scalable image-based rendering (IBR) pipeline

for indoor scenes with reflections. Observing that the reconstructed global

mesh of an indoor scene can be used as a geometric prior to improve the

robustness of the reflection decomposition algorithm but still inadequate

for high-quality reflection rendering, we propose a global-mesh-guided al-

ternating optimization algorithm that can construct front surface and back

reflection layer RGB images and meshes, a two-layer representation, to

support the accurate rendering of various reflections effectively. The algo-

rithm alternatively optimizes two-layer RGB images and meshes to minimize

the image composition error to reduce blurred artifacts in view warping.

Moreover, to support densely sampled images required for two-layer mesh

construction and high-frequency reflection rendering, we propose to inte-

grate convolutional neural network (CNN) based super-resolution network

and a motion refinement module to render high-resolution images with

low-resolution textures. The motion refinement module can predict local

offsets to correct errors of mesh-based warping further to improve rendering

quality. Hence, our IBR pipeline can substantially save memory storage and

exploit the multi-scale feature learned by CNN to reduce the artifacts caused

by floating geometries. Experimental results show that our method can pro-

duce highly realistic rendering results with different kinds of reflections, and

the rendering quality is superior to state-of-the-art IBR or neural rendering

algorithms.

CCS Concepts: •Computingmethodologies→ Image-based rendering,

Neural network; Virtual reality.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

© 2021 Association for Computing Machinery.
XXXX-XXXX/2021/1-ART $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Additional Key Words and Phrases: Image-based rendering, Two-layer mesh,

Reflection, Super-resolution, Neural network

ACM Reference Format:

Anonymous Author(s). 2021. Scalable Image-based Indoor Scene Rendering

with Reflections. 1, 1 (January 2021), 14 pages. https://doi.org/10.1145/

nnnnnnn.nnnnnnn

1 INTRODUCTION

Image-based rendering (IBR) algorithms have been applied to syn-

thesize photo-realistic images at novel viewpoints for indoor scenes,

which is crucial to immersive virtual reality applications, such as

free-viewpoint navigation of real-estate or museum. However, it is

technically challenging due to two reasons. First, objects in indoor

scenes are often observed near cameras, which results in severe

occlusions and large motion parallax. Second, high-frequency view-

dependent effects, such as sharp highlights and reflections from

reflective or glossy surfaces, frequently occur due to the existence

of mirrors, TV screens, and smooth surfaces of man-made objects.

Layered representations, such as layered depth images [Shade

et al. 1998], multi-plane images (MPI) [Flynn et al. 2019; Zhou et al.

2018], and multi-spherical images (MSI) [Broxton et al. 2020], are

developed to handle occlusions and view-dependent effects in IBR

simultaneously. These representations can be used to store the RGB

and compositing coefficient 𝛼 of reflected scenes in separate layers

and synthesize new images with reflections through layer blend-

ing. In [Sinha et al. 2012], two-layer RGBD images, the front sur-

face and the rear reflection layer RGBD images, are constructed

using the semi-global multi-view stereo algorithm for high-quality

rendering of reflections. However, the construction algorithm of

layered representations is either sensitive to hyper-parameters or

time-consuming. Besides, it is also important to investigate how to

construct the layer representation adaptively to reduce the required

, Vol. 1, No. 1, Article . Publication date: January 2021.

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

2 • Anon. Submission Id: 445

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

memory storage. An alternative way for IBR of indoor scenes is to

train neural networks, such as neural radiance fields [Mildenhall

et al. 2020] and deep view synthesis network [Xu et al. 2019], to

model the scene structure from sampled images implicitly. These

networks can render reflective surfaces realistically, but it is com-

putationally expensive to train them to render a large scale indoor

scene in real-time. In addition, it is still challenging for deep neural

networks to model sharp edges of reflections, as shown in Fig. 1.

In this paper, we address the problem of IBR of indoor scenes

with reflections, which involves two issues: robust front surface and

reflection layer decomposition and the balance between memory

storage and the requirement of high-resolution images in virtual

reality applications. The motivation of our IBR pipeline is based on

two observations. First, with the fast development of structure from

motion (SFM) and depth-camera-based 3D scene reconstruction

techniques [Dong et al. 2019; Furukawa and Ponce 2010; Hartley and

Zisserman 2004; Schönberger and Frahm 2016; Xu et al. 2017], the

ability to capture high-quality geometry of an indoor scene has been

significantly improved, even for mirrors and glasses [Whelan et al.

2018]. Therefore, we can obtain the prior geometry for reflective

surfaces through a well-reconstructed global geometry [Hedman

et al. 2018, 2016]. Such prior geometry can be used to improve the

robustness of the reflection decomposition algorithm for reflection

rendering. However, it is still challenging to handle the noises in

the reconstructed prior geometry and camera poses to obtain high-

quality reflection rendering results. Second, the realistic rendering

of high-frequency reflections requires a much denser sampling rate

than that of diffuse scenes. Empirically, we observe that it is nec-

essary to maintain 30% overlap of reflections among neighboring

images to obtain a high-quality reflection decomposition results,

resulting in thousands of captured high-resolution (HR) images used

as texture images in IBR. The memory cost will be unaffordable to

store HR images in GPU memory as pointed out in [Hedman et al.

2016].

These two observations motivate us to design a IBR pipeline with

two novel technical components:

• A global-mesh-guided alternating optimization algorithm for ro-

bust per-view two-layer mesh construction. We construct a two-

layer mesh for each view with reflections, including a surface

mesh representing the RGB and geometry information of front

surfaces and a reflection mesh representing that of the front sur-

faces’ reflected part of a scene. This representation can effectively

support image-based rendering of an indoor scene with reflec-

tions. To obtain such a representation, we project the indoor

scene’s global mesh to each view to initialize the surface layer

mesh and then initialize the reflection layer mesh by the intersec-

tion of reflected rays with the global mesh. However, due to noises

of reconstructed camera poses and geometries, there are errors

in the initialized meshes that will severely downgrade the render-

ing quality of reflections. Thus, combining with the linear image

composition rule in [Sinha et al. 2012] and a multi-view consis-

tency constraint for surface layer RGB images, we propose an

alternating optimization algorithm that can achieve high-quality

reflection-decomposition results at each view. The decomposed

images are used as textures for the constructed two-layer meshes.

Furthermore, we propose a detection-then-decomposition proce-

dure to improve the two-layer mesh representation for reflected

highlights.

• A convolutional neural network (CNN) based super-resolution

(SR) method to render HR images with low-resolution (LR) in-

put images, which can substantially save memory storage. The

network is adapted from the SR network in [Wang et al. 2020],

and we add a motion refinement module to the network to mit-

igate the artifacts, for instance, blurring at object boundaries,

caused by inaccurate geometry. Since the network is also trained

to de-artifact, we term the network as DSRNet hereafter. The

network’s input is the image generated by our view warping

algorithm designed to mitigate the discontinuity artifacts of the

tile-based view warping algorithm in [Hedman et al. 2018, 2016].

Our view warping algorithm is based on camera pose to avoid

discontinuous view selection among neighboring tiles. Coupling

with blending weight decay at image boundaries and occlusion

edges, the rendering results’ smoothness in the free-viewpoint

navigation can be achieved. Furthermore, the surface and reflec-

tion layers in the selected views are warped according to their

meshes separately and then blended at the target viewpoint to

render the reflections correctly.

We have conducted experiments with our IBR pipeline for a va-

riety of indoor scenes, ranging from apartments to offices. Experi-

mental results show that our method can produce highly realistic

rendering results with different kinds of reflections, and the render-

ing quality is superior to state-of-the-art IBR or neural rendering

algorithms.

2 RELATED WORK

IBR can be conducted in a wide spectrum, from no geometry with a

densely arranged camera array to explicit geometry reconstruction

to assist the image-warping-based view synthesis [Gortler et al.

1996; Levoy and Hanrahan 1996; Penner and Zhang 2017]. The

comprehensive survey of IBR techniques can be found in [Shum and

Kang 2000; Zhang and Chen 2004], and the recent deep-learning-

based IBR methods are reviewed in [Tewari et al. 2020]. We review

the literature mostly related to our work in this section.

IBR with geometry: Geometry information is mainly used to

map pixels between images captured at different viewpoints and

determine their visibility. The representation of the geometry in

IBR can be geometric proxies for depth correction, depth images

for view interpolation, visual and opacity hulls for pixel visibil-

ity, and 3D meshes for view-dependent texturing and surface light

fields [Buehler et al. 2001; Chen and Williams 1993; Debevec et al.

1996; Matusik et al. 2000, 2002; Wood et al. 2000]. The 3D geometry

of a scene can be reconstructed from captured images by multi-view

stereo(MVS) algorithms [Furukawa and Ponce 2010; Goesele et al.

2007; Rhemann et al. 2011], and used to guide the image warping

and blending for novel view synthesis [Cayon et al. 2015; Chaura-

sia et al. 2011; Goesele et al. 2010]. Chaurasia et al. [2013] utilized

super-pixels as constraints to obtain per-pixel depth and then warp

images. It significantly reduces the image warping artifacts along

occlusion edges produced by the method in [Chaurasia et al. 2011].

, Vol. 1, No. 1, Article . Publication date: January 2021.

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

Scalable Image-based Indoor Scene Rendering with Reflections • 3

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

For indoor scenes, piece-wise planes and Manhattan-world assump-

tion are exploited to reconstruct 3D planes from input images for

image-based indoor scene rendering [Furukawa et al. 2009; Sinha

et al. 2009].

In [Hedman et al. 2016], the reconstructed global geometry is

refined at each view to align depth and image edges. The resulting

per-view meshes are beneficial to handle large occlusions and mo-

tion parallax in IBR. Afterward, Hedman et al. [2018] proposed to

train a deep neural network to blend images warped with per-view

meshes to reduce ghosting artifacts caused by inaccurate geome-

try. These two approaches can reproduce view-dependent effects

to some extent. However, they can not handle reflections because

blending artifacts will be obvious if warping images using reflective

surface geometry only. Our work is inspired by these two works,

but exploit two-layer mesh representation to render indoor scenes

with reflections.

A pioneering work on layered representation used in IBR is lay-

ered depth images (LDI) [Shade et al. 1998]. LDI can be viewed as

a projective volume at a specific viewpoint which stores not only

what is visible in the input image, but also what is behind the visible

surface. It is proposed to handle large occlusions resulting from the

object observed at close distance. Penner et al. [2017] constructed a

projective volume representation from the captured scene images

where each voxel encodes the uncertainty in the MVS and achieved

high quality view synthesis results even at occlusion edges. In [Hed-

man et al. 2017], for the photos captured by a mobile phone or

hand-held DSLR camera, two color-and-depth layer panoramas are

constructed to produce perspective views near captured viewpoints

with motion parallax effects. Broxton et al. [2020] designed a spher-

ical dome to capture light field videos. Each frame is represented

first with multi-sphere images computed by extending the deep

neural network in [Xu et al. 2019] and then simplified to multi-layer

meshes.

Our two-layer mesh representation is used to approximate the

image warping behavior of the surface and its reflections separately,

which is mostly related to reflection decomposition work in [Sinha

et al. 2012]. Kopf et al. [2013] proposed to render the reflections in

gradient domain. The reflection decomposition can also be achieved

according to the motion cue computed with SIFT flow [Li and Brown

2013], homography [Guo et al. 2014], and dense optical flow [Xue

et al. 2015]. In contrast, we leverage the global mesh as a prior to

robustly compute the color and geometry of reflection layers for

scalable indoor scene rendering.While themulti-layeredmesh repre-

sentation in [Broxton et al. 2020] can handle view dependent effects,

their target is to allow as-large-as-possible viewpoint movement

near a given viewpoint in VR videos.

Deep Learning-based IBR: Given captured images, deep learning-

based IBR methods are capable of learning multi-scale features

as the scene representation to facilitate IBR, such as end-to-end

deep stereo for unstructured view interpolation [Flynn et al. 2016],

deep view synthesis for spares images captured under controlled

conditions [Xu et al. 2019], multi-plane images [Mildenhall et al.

2019; Srinivasan et al. 2019; Xu et al. 2019; Zhou et al. 2018], neu-

ral texture [Thies et al. 2019a], and neural volume [Lombardi et al.

2019]. Implicit function representation of a 3D scene can be learned

through coordinate-based multilayer perceptron (MLP) by minimiz-

ing the similarity between the rendered image and the captured

image at the same viewpoint [Sitzmann et al. 2019]. Mildenhall et

al. [2020] trained a rendering network connected with a coordinate-

based MLP using positional encoding to effectively encode the ra-

diance fields, termed as neural radiance fields (NeRF). However,

the training and testing of the NeRF network are time-consuming.

Hence, Liu at al. [2020a] proposed neural sparse voxel fields to prune

unnecessary samples inside the empty space of a 3D scene. The vol-

ume rendering step can also be accelerated by training a network

to approximate the integration [Lindell et al. 2020].

The reconstructed coarse scene geometry can be used as a scaf-

fold to fuse the image features for novel view synthesis. Riegler

et al. [2020a] designed a recurrent encoder-decoder network to

process reprojected features from neighboring views for view syn-

thesis. They improved the view synthesis results further through

view-dependent on-surface feature aggregation [Riegler and Koltun

2020b]. A factored representation of a scene, including point cloud,

semantic structure and latent appearance code, are used in [Meshry

et al. 2019] to render the scene at new viewpoints with different

appearances.

Deep Learning for Image and Video Super-resolution: The

deep learning methods for the task of image super-resolution (SR)

range from the CNN-based method to approaches using Generative

Adversarial Network (GAN) [Dong et al. 2014; Ledig et al. 2017; Rako-

tonirina and Rasoanaivo 2020]. For a comprehensive survey on deep

learning based image super-resolution methods, we refer to the sur-

vey by Wang et al. [Wang et al. 2020]. Temporal coherence of video

super-resolution (VSR) methods can be realized through integrating

motion compensation modules to the SR neural network, such as

multi-resolution spatial transformer module in VESPCN [Caballero

et al. 2017], sub-pixel motion compensation layer in SPMCVSR [Tao

et al. 2017], pyramid, cascading and deformable (PCD) alignment

module in EDVR Wang2019, and recurrent networks to accelerate

the frame warping in video SR [Fuoli et al. 2019; Haris et al. 2019;

Sajjadi et al. 2018].

In game industry, temporal supersampling methods are devel-

oped for the SR of rendered videos [Chaitanya et al. 2017; Edelsten

et al. 2019; Tatarchuk et al. 2014]. Based on the motion vectors be-

tween frames computed using the camera and depth information

provided by the game engine, Xiao et al. [2020] proposed a network

to learn how to blend multiple-frames in the feature space for high-

quality supersampling results. To handle possible warping errors

induced by inaccurate geometry at occlusion edges, we integrate a

motion correction module into this network to align images locally

to improve SR results.

3 OVERVIEW

The developed IBR pipeline consists of three main stages: 1. After

obtaining the global mesh of an indoor scene, the pipeline starts with

constructing per-view two-layer meshes to represent the geometry

of an indoor scene with reflections. 2. A view-warping algorithm is

developed to synthesize the image with low-resolution textures (14
resolution of rendered HR images) at the user-specified viewpoint.

3. Such images are fed into the DSRNet to produce the HR rendering

, Vol. 1, No. 1, Article . Publication date: January 2021.

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

4 • Anon. Submission Id: 445

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

result. As illustrated in Fig. 1, the constructed two-layer meshes

along with the decomposed surface and reflection layer images can

be used to render highly realistic reflections. Since we perform the

refection decomposition on images before gamma-correction (see

Sec. 4.2 for details), the decomposed images are gamma-corrected

in all our figures for better visualization.

The quality of global mesh G is critical to the success of IBR of

an indoor scene. In our system, we construct the global mesh G

from captured multi-view images using structure frommotion (SFM)

software RealityCapture [CapturingReality 2016]. The images are

captured with a Canon EOS 60D digital single-lens reflex camera. We

convert the raw image (at the resolution of 6, 000 by 4, 000) into the

16-bit tiff format. Empirically, we found that exploiting raw images

in SFM helps the software to calculate camera poses more accurately

(slightly down-sampling the raw image could improve the conver-

gence speed of the pose estimation). While this software provides a

smooth global mesh estimate even in textureless regions [Jancosek

and Pajdla 2011], there are still missing or incorrect geometries due

to the severe occlusions and misalignment of feature points. Thus,

we also consolidate the reconstructed global mesh using RGB-D

data (captured by a Microsoft Kinect4 RGB-D camera) for objects

with strong reflections or under severe occlusions. The geometry

of mirrors and their mask in an image are obtained by the method

in [Whelan et al. 2018]. Additionally, for those light sources that can

not be reconstructed automatically, we allow users to create their

proxy meshes using the sweeping-based modeling method [Chen

et al. 2013]. The consolidated global mesh serves as a prior in the

follow-up processing of layered mesh construction.

Constructing a two-layer mesh for each reflective object in the

scene could be time-consuming. For small-size reflective objects

(around 30x30x30𝑐𝑚3) or reflective surfaces far from the camera

(larger than 3𝑚), the reflection captured in the image is out of focus

and thus blurred. We found it is usually acceptable to render their

view-dependent reflections through image blending. Therefore, we

choose to construct layered meshes for salient and large reflection

planes. To detect reflective surfaces, we first detect 3D planar sur-

faces in the global mesh using the RANSAC method [Schnabel et al.

2007]. For those planes larger than 0.09𝑚2 or its projection in at least

one image is more than 1000 pixels, the set of images to which these

planes are visible will be the target of the reflection detection. Simi-

lar to [Sinha et al. 2012], we calculate multi-view cost volumes for

the images to check whether second local matching-cost minimums,

close to the reflected scene geometry of the plane but different to

the depth of the projection of global geometry, exists in the volume.

If found, the plane should contain reflections. We also run state-of-

the-art image-based mirror detection method in [Lin et al. 2020] to

detect mirrors in images not captured with the device in [Whelan

et al. 2018]. Such images are used as additional textures to improve

rendering quality. With such a reflection detection procedure, more

than 90% reflective planes can be detected. Our system also allows

users to specify reflective surfaces to correct mislabeling manually.

Afterward, using global mesh as a prior, we perform reflection de-

composition (§ 4.2) for each image that has reflections to provide

surface and reflection layer meshes and images as the two-layer

representation.

(a) (b) (c)

(d) (e) (f)
Fig. 2. Depth refinement to align depth and color edges. (a) Initial depth

map. (b) Visualization of normal map. (c) Misalignment between depth and

color edges. (d) Regions between depth and color edges. (e) Refined depth

edges. (f) Constructed surface mesh. Lines in yellowgreen indicates the

depth edges. Please zoom-in to view the details.

The rest of this paper is organized as follows. Sec. 4 describes

the details of per-view depth refinement and the reflection decom-

position in per-view two-layer mesh construction. Sec. 5 describes

the details of two-layer view warping algorithm, and the details

of DSRNet are described in Sec. 6. The implementation details and

experimental results are described in Sec. 7 and Sec. 8 respectively.

Finally, we conclude and discuss limitations and future work in

Sec. 9.

4 PER-VIEW TWO-LAYER MESH CONSTRUCTION

In this section, we will describe the details of surface layer mesh con-

struction and our reflection decomposition algorithm to construct

per-view two-layer meshes for the subsequent rendering.

4.1 Surface Layer Mesh Construction

It starts with rendering the global mesh G at the viewpoint of image

I to obtain a depth image D, and then refine D to align depth and

color images to reduce tearing-apart, ghosting artifacts in IBR. The

surface layer mesh is finally constructed according to the refined

D. In contrast to align depth and color edges using guided median

filter as in [Hedman et al. 2018, 2016], we integrate surface normal

information in both depth edge detection and refinement to assist

the edge alignment.

Depth edge detection: For each pixel in the depth image, we first

calculate its vertex position v𝑖 and normal n𝑖 . Second, we detect

whether there exists a depth edge between two neighboring pixels

𝑝𝑖 and 𝑝 𝑗 by checking their mutual planar distance 𝑑𝑡𝑖 𝑗 , which is :

𝑑𝑡𝑖 𝑗 = max
(��(v𝑖 − v𝑗

)
· n𝑖

�� , �� (v𝑖 − v𝑗
)
· n𝑗

��) (1)

If the calculated 𝑑𝑡𝑖 𝑗 exceeds threshold 𝜆, it indicates a depth edge
as shown in Fig. 2(c). As the remote pixels are less sensitive to depth

change, we set 𝜆 as 0.01 ∗max(1,min(𝑑𝑖 , 𝑑 𝑗)) where 𝑑𝑖 means the

depth for pixel 𝑖 that is in unit meter in this step. After obtaining

depth edges, we generate a depth refinement mask to restrict the

depth refinement area by rendering frontal parallel square patch of

side length 4𝑐𝑚 at each depth edge pixel to current view as shown

in Fig. 2(d).

Depth refinement: Similar to [Hedman et al. 2018], we exploit

the COLMAP software [Schönberger et al. 2016] to recover the

detailed, pixel-wise depth inside the refinement mask. To this end,

we import the camera poses and 3D points output in the stage

, Vol. 1, No. 1, Article . Publication date: January 2021.

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

Scalable Image-based Indoor Scene Rendering with Reflections • 5

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

Reflection
detection

Reference image

Neighboring images

3D plane detection
Global Mesh

0 1

=

Reference image

Fu
rth

er
 o

pt
im

iz
at

io
n

Initialization

Per-view two layer decomposition

0, 0 ,
Global consistency optimization

0 Before

1

Initializ

After

0

=

0

Fig. 3. The pipeline of reflection decomposition algorithm.

of sparse reconstruction from the RealityCapture software into

the COLMAP, and run the pixel-wise view selection based multi-

view stereo algorithm to obtain the depths inside the refinement

mask. Afterward, if, for a pixel, its photometric depth and geometric

depth consistency differ by more than 5%, the pixel is deemed to be

uncertain, and we discard its depth. Usually, the re-detected depth

edge after refinement is closer to the color edge. Afterward, we

adapt edge-ware interpolation in Epicflow [Revaud et al. 2015] to

compute the depth value 𝑑𝑖 for a pixel 𝑖 between the depth edges

and their closest color edges as follows (Fig 2.e):

𝑑𝑖 =
∑
𝑗 ∈N𝑖

𝑤𝑔 (𝑖, 𝑗)∑
𝑘 𝑤𝑔 (𝑖, 𝑘)

𝑑 𝑗𝑖 , (2)

where the pixels in N𝑖 is the 4-closest neighbors outside the refine-

ment mask of 𝑖 computed using the geodesic distance 𝑑𝑔
(
𝑝𝑖 , 𝑝 𝑗

)
,

and𝑤𝑔 (𝑖, 𝑗) = exp
(
−𝑑𝑔 (𝑖, 𝑗)

)
, and 𝑑

𝑗
𝑖 is the depth computed by the

intersection between the line of sight through pixel 𝑖 and the plane

defined according to the 3D position and normal at pixel 𝑗 . We also

allow users to specify edges on color images if no color edge is close

to a occlusion edge in almost constant color regions.

Converting refined depth to a surface mesh: We initialize a

triangle mesh by creating edges between neighboring depth map

pixels and a diagonal edge to convert each pixel square into two tri-

angles. Then, the mesh is simplified to be the final per-view surface

mesh [Garland and Heckbert 1997]. After simplification, the vertex

number of per-view mesh is less than 40,000 on average. Thus, the

vertex indices can be stored using unsigned short type. Moreover,

we try to preserve mesh edges along depth occlusion edges by in-

creasing their quadric error by a factor of 4 in mesh simplification

to improve the mesh resolution around depth edges for the purpose

of edge anti-aliasing in the rendering. Additionally, the meshes for

image areas covered by reflections are constructed as described in

the next section.

4.2 Reflection Decomposition

We follow the linear image composition rule in [Sinha et al. 2012]

to decompose an image into surface and reflection layer images and

optimize for two-layer meshes. Specifically, the RGB values of a

reference image 𝑘 with reflections can be defined as follows:

I𝑘 = I
0
𝑘 + 𝛽𝑘 I

1
𝑘 (3)

After obtaining the surface layer image I0
𝑘
and the reflection layer

image I1
𝑘
, they can be warped to a neighboring view 𝑘 ′ to form a

warped image Ĩ𝑘′ . Hence, we minimize the difference between Ĩ𝑘′

and I𝑘′ in the reflection decomposition. Given a reference image I𝑘
and its neighboring views, the task of reflection decomposition is

to figure out five quantities, a surface layer image I0
𝑘
, a reflection

layer image I1
𝑘
, a mask 𝛽𝑘 , a mesh of the surface layer M0

𝑘
, and a

mesh of the reflection layer M1
𝑘
. The meshes M0,1

𝑘
are used to warp

I
0
𝑘
and I1

𝑘
to a neighboring view 𝑘 ′ to form a warped image Ĩ𝑘′ using

Eq. 3. The mask 𝛽 is a binary mask on the surface layer to indicate

whether reflections cover a pixel. The mask value is set to 1 for a

covered pixel, otherwise 0.

Our reflection decomposition algorithm exploits the reconstructed

global mesh and multi-view consistency constraints across decom-

posed layers to improve the algorithm’s robustness against noise.

It consists of three stages: two-layer meshM
0,1
𝑘

and 𝛽 mask initial-

ization, per-view two-layer decomposition, and global consistency

optimization to correct the possible errors in the per-view decom-

position stage. The corrected layer images are fed to per-view de-

composition as priors to refine the decomposition result further, as

illustrated in Fig. 3. The reflection decomposition uses images before

gamma correction due to the linear composition rule in Eq. 3. Usu-

ally, two-layer decomposition converges to a good-quality within

two rounds. For reflected highlights with saturated intensities that

break the composition equation in Eq. 3, we propose first to detect

highlights and then rely on global consistency to obtain I
0
𝑘
. In the

following, we describe the details of each stage in our algorithm.

4.2.1 Initialization. Per-image reflection mask 𝛽𝑘 is initialized by

projecting the global plane with detected reflections onto the image

𝑘 . The mask values of pixels covered by the projection are set to

1, otherwise 0. Afterward, we check whether a pixel belongs to

the plane according to each pixel’s distance to the plane and the

difference between their normals. If the distance is below 0.03𝑚 and

the angle between the two normal vectors is below 60◦, we set its

mask value to 1 and 0 otherwise. Since we have refined the depth

map to align depth and color edges, the 𝛽𝑘 after this step will align

to color edges. Note that we use the obtained 𝛽𝑘 to indicate the

reflection plane in the image, but do not optimize for 𝛽𝑘 as in [Sinha

et al. 2012].

As to two-layer mesh initialization for the plane with reflections,

our system first computes a plane 𝑝𝑘 using the refined depth in 𝛽𝑘
and then utilize this plane to set the depth values for pixels inside

𝛽𝑘 . Afterward, we initialize the depth of a reflection layer through

reflections. Specifically, we create a virtual camera by reflecting the

camera of image 𝑘 with 𝑝𝑘 and render a depth map of the indoor

scene using the virtual camera. The rendered depth map inside 𝛽𝑘 is

used to initialize the meshM
1
𝑘
as illustrated in Fig.3. A surface layer

, Vol. 1, No. 1, Article . Publication date: January 2021.

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

6 • Anon. Submission Id: 445

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

mesh M
0
𝑘
is directly initialized using the refined depth inside 𝛽𝑘 .

Both meshes are constructed as described in Sec. 4.1 and simplified

to reduce the degree of freedoms in optimization.

We initialize I0,1
𝑘

using Eq. 8, but the median operation is replaced

with minimum to initialize I0
𝑘
and the initial I1

𝑘
is set to I𝑘−I

0
𝑘
. Specif-

ically, we warp the reference view to neighboring views through

initialized two-layer meshes to compute Eq. 8. However, due to

the error in the reconstructed depth and camera poses, there exists

the misalignment between the warped reference image and images

at neighboring views, leading to the degradation of the initialized

I
0
𝑘
and the subsequent decomposition results. To this end, we per-

form as-rigid-as-possible local warping with 40×30 grids [Zhou and

Koltun 2014] to reduce the misalignment in the initialization (Please

refer to Sec.1 in "other supplementary materials" for details).

4.2.2 Alternating optimization for two-layer decomposition. The

objective function developed to estimate two-layer meshesM0,1
𝑘

and

color images I0,1
𝑘

is as follows:

argmin
(R,T)1𝑘 ,M

0,1
𝑘
,I0,1
𝑘

𝐸𝑑 + 𝜆𝑠𝐸𝑠 + 𝜆𝑝𝐸𝑝 , s.t. I0,1
𝑘

(u) ∈ [0..1] , (4)

where u indicates a pixel in the reference image I𝑘 , and (R,T)1𝑘 are

the rotation and translation transformations for M1
𝑘
respectively,

two sets of augmented variables to estimate the global transforma-

tion error of reflection layer in the initialization. The weights 𝜆𝑠 , 𝜆𝑝
are used to balance between the data term 𝐸𝑑 , the smoothness term

𝐸𝑠 , and the prior term 𝐸𝑝 , which are set to 0.04 and 0.01 respectively.

We detail each term in the following:

Data Term: The data term 𝐸𝑑 measures the difference between the

image Î𝑘′ composed by rendering two-layer images and depth maps

at a neighboring viewpoint 𝑘 ′ and the captured photographs I𝑘′ ,

which is:

Edata =
∑

𝑘′ ∈N𝑘

∑
u

‖̂I𝑘′ (u) − I𝑘′ (u)‖
2 (5)

Î𝑘′ (u) = I
0
𝑘′

(
𝜔−1

(
u, D̂0

𝑘

))
+ 𝛽𝑘′

(
𝜔−1

(
u, D̂0

𝑘

))
I
1
𝑘′

(
𝜔−1

(
u, D̂1

𝑘

))
,

where N𝑘 consists of the image 𝑘 and its 6 nearest neighboring im-

ages determined by their camera poses, u′ = 𝜔−1 (u) is the warping

function from 𝑘 ′ to 𝑘 based on depth maps D̂0,1
𝑘

that are obtained

by rendering M0
𝑘
and R

1
𝑘
M

1
𝑘
+ T

1
𝑘
at image 𝑘 ′. We determine N𝑘 by

rendering the reflection layer mesh at reference view to the neigh-

boring views and then checking the depth overlap (depth difference

< 0.05 ∗ min(depth)) in 𝛽𝑘 . The images with more that 30% depth

overlap are sorted according to the camera pose difference (Eq.11),

and top six images are kept to form N𝑘 .

Smoothness term: The smoothness term aims to minimize the gradi-

ent of separated color images I0,1
𝑘

and the mean curvature normal of

M
0,1
𝑘

. We downscale the smoothness weights according to the color

edges.

𝐸𝑠 =
∑
u

(
𝑒−∇I

0,1
𝑘

(u) ‖∇I
0,1
𝑘

(u)‖2
)
+
∑
v

‖HM
0,1
𝑘

(v)‖2 (6)

where v is the vertex of M0,1
𝑘

, and H indicates the Laplacian matrix

computed using cotangent weights [Desbrun et al. 1999].

Prior Term: We add a prior term on I
0,1
𝑘

To make the optimization

stable:

𝐸𝑝
(
I
0,1
𝑘

)
=
∑
u

(
‖I0𝑘 (u)‖2

)
+
∑
u

(
‖I1𝑘 (u)‖2

)
(7)

Optimization: Since the optimization problem is complicated, we

develop an alternating optimization algorithm to minimize the ob-

jective function of Eq. 4 as in [Sinha et al. 2012]. Specifically, after

initializing the mask 𝛽 and depth of surface and reflection layers

at an image 𝑘 , the algorithm alternatively solves for two sets of

variables, namely I0,1
𝑘

and
{
(R,T)1

𝑘
,M0,1

𝑘

}
until convergence. In each

iteration, each set of variables is solved by fixing another set of vari-

ables. Note that the 2D warping field is also used in the first iteration

optimization for I0,1
𝑘

, since two-layer meshes are not optimized in

this stage, and it is necessary to reduce the misalignment between

2D images caused by warping with initial meshes. In the second

iteration optimization of I0,1
𝑘

, we discard the 2D warping field since

the two-layer meshes have been optimized.

4.2.3 Global consistency optimization. It is used to enforce that the

decomposed two-layer color images should be consistent among

neighboring views. Precisely, we first warp the neighboring surface

layer images I0
𝑘′

in mask 𝛽0
𝑘′

to reference view according to D0
𝑘′

and

calculate the median value at each pixel to filter out erroneous RGB

values output by the per-view decomposition. The updated surface

layer images Ĩ0
𝑘
at a pixel 𝑢 is computed as follows:

Ĩ
0
𝑘 (u) = median

({
I
0
𝑘′

(
𝜔−1

(
u,D0

𝑘

))
|𝑘 ′ ∈ N𝑘

})
(8)

The RGB values of reflection layer are updated by enforcing the

linear composition rule in Eq.3:

Ĩ
1
𝑘 (u) =

{
I𝑘 (u) − Ĩ

0
𝑘
(u) if I𝑘 (u) − Ĩ

0
𝑘
(u) − I

1
𝑘
(u) < 0

I
1
𝑘
(u) otherwise

(9)

After both layer images are updated for each view, all the updated

images are fed into per-view reflection decomposition algorithm

for another round of refinement. In this round, the updated surface

and reflection layer images are used as additional priors such that

the global consistency constraint is implicitly enforced. It can be

simply implemented by adding the following two energy terms in

the per-view decomposition:

𝜆𝑔

(∑
u

‖I0𝑘 (u) − Ĩ
0
𝑘 (u)‖2 +

∑
u

‖I1𝑘 (u) − Ĩ
1
𝑘 (u)‖2

)
, (10)

where the weight 𝜆𝑔 is set to 0.05.

4.2.4 Highlights. In indoor scenes, highlights often appear on glossy

surfaces due to their reflection of light sources. However, pixels in-

side highlights have over-saturated intensities, which can not be

modeled by Eq. 3. Therefore, we detect the pixels with highlights as

shown in Fig. 4 to avoid the computation of 𝐸𝑑𝑎𝑡𝑎 for these pixels.

We rely on multi-view consistency to improve the robustness of

highlight detection. First, we leverage mean-shift clustering (spatial

radius equals 8, color radius equals 14) to extract the candidate high-

light clusters wheremost pixels (larger than 90%) have high intensity

(larger than 0.8) for all the captured images. Second, we eliminate

, Vol. 1, No. 1, Article . Publication date: January 2021.

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

Scalable Image-based Indoor Scene Rendering with Reflections • 7

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

(a) (b)

(c) (d)

Fig. 4. The procedure of highlights detection. (a) Reference color image.

(b) Mean-shift clusters. (c) Candidate highlight clusters. (d) Final highlight

clusters.

false positives, such as white papers, by warping candidate highlight

clusters to images neighboring to the reference image according to

surface layer depth D
0
𝑘′
. If the overlap between a cluster and other

clusters in the neighboring images is less than 80% on average, this

cluster is considered as true highlight clusters. This because that

the reflected highlights should not be warped according to surface

layer depth. Fig. 4 shows the highlight detection results.

In reflection decomposition, we first initialize the highlight pixels

in I
0
𝑘
(u) with 0 and I

1
𝑘
(u) with I𝑘 (u), and then optimize for I0,1

𝑘
without detected pixels. However, after the global consistency op-

timization, these 0 values in I
0
𝑘
will be filled by the median RGB

values of corresponding pixels in its neighboring views. The filled

values can be used in the smoothness term and Eq. 10 in the second

round optimization of I0,1
𝑘

. In our implementation, the RGB values of

highlight pixels in I
1
𝑘
will not be modified during global consistency

optimization. The mesh optimization of surface and reflection layer

remains the same, and we directly use the RGB values of highlight

pixels inside I1
𝑘
to compute the 𝐸𝑑𝑎𝑡𝑎 .

4.2.5 Mirrors. As mirrors are perfectly reflective surfaces without

texture, we choose to set I1
𝑘
= I𝑘 and I

0
𝑘
= 0 for the pixels inside a

mirror. Next, instead of optimize D0,1
𝑘

and 𝛽𝑘 , we fixed the D0
𝑘
for

the mirror using the reconstructed 3D mirror plane during scanning

and only optimize for the D1
𝑘
in reflection decomposition. Besides, if

there are opaque materials attached to the mirror, its reconstructed

geometry will be on the 3D mirror plane. We leverage this condition

to set the pixel covered by opaque materials to 0 in 𝛽𝑘 , which means

that there are no reflections inside these pixels. These pixels are not

considered in the reflection decomposition. Besides, to obtain clear

textures of mirrors, we develop an algorithm to remove the camera

reflected in a mirror. Please refer to Sec.2 in "other supplementary

materials" for details.

5 VIEW WARPING USING TWO-LAYER MESH

REPRESENTATION

The view warping algorithm first warps surface and reflection layer

images with a two-layer mesh to a novel view V𝑛 respectively and

then obtain the synthesized image by compositing the warped sur-

face and reflection images using Eq. 3. While tile-based inside-out

IBR algorithm can apply to the rendering of each layer [Hedman

InsideOut Ours

Fig. 5. Compared with InsideOut[Hedman et al. 2016], our view warping

can avoid discontinuity artifacts and produce smoother image blending

result.

et al. 2016], we observe that this pipeline often leads to discontinuity

artifacts as illustrated in Fig. 5. We hypothesize that the disconti-

nuity artifact is related to two factors. First, the view selection of

tile-based rendering is independent in each visible grid cell, which

may result in inconsistent view selection in neighboring cells. Sec-

ond, IBR-cost based weighting scheme is independently computed

at each pixel. This scheme aims to select the closest ray for each

pixel, a principle often used in classical IBR algorithms [Gortler

et al. 1996; Levoy and Hanrahan 1996]. However, it may also result

in non-smooth weight distribution. Therefore, we design a view-

based IBR algorithm to improve the smoothness of the rendering

results. The term view-based indicates that the view selection and

blending weights are based on the camera poses of views relative

to the novel view V𝑛 . The composited images at V𝑛 are fed into

the DSRNet to obtain the final high-resolution rendered images.

The overall two-layer rendering algorithm consists of two steps:

front-most depth map (FMDP) generation and camera-pose-based

view warping. Front-most depth is used in the fuzzy depth test in

the rendering, similar to [Hedman et al. 2016]. We will describe the

details of each step below.

View selection:We define a distance 𝑑𝑘 between a view V𝑘 and the

novel view V𝑛 to facilitate the view selection as follows:

𝑑𝑘 = ∠
(
R
𝑧
𝑘 ,R

𝑧
𝑛

)
∗ 𝜋/180 + 𝜆‖t𝑘 − t𝑛 ‖/‖t𝑛 ‖ (11)

where the camera pose information for a view V𝑘 includes the

optical center t𝑘 and optical axis R𝑧
𝑘
, i.e. the 𝑧 axis of the camera

rotation matrix. This distance focuses on the consistency of the

look-at direction of each camera by only using R
𝑧
𝑛 as a simplified

representation of a camera orientation. Empirically, we found it

worked well when there seldom exist the camera rotations around

its optical axis. The weight 𝜆 equals 0.1, and ∠
(
R
𝑧
𝑘
,R𝑧𝑛

)
is the angle

between R
𝑧
𝑘
and R

𝑧
𝑛 .

after view warping, we choose to

independently select closest views at

eight quadrants of the local coordinate

system of V𝑛 and continue to split each

quadrant into nine sub-regions based

on the pairwise combination of three

angle and three distance intervals (see the right inset). This design

, Vol. 1, No. 1, Article . Publication date: January 2021.

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

8 • Anon. Submission Id: 445

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

W/O IBR-cost W/ IBR-cost

Novel View 3D Point

Cameras IBR Cost

Low IBR cost

High IBR cost

GT Surface Per-view Depth

Floating geometry

Fig. 6. The floating geometry at one pixel will be removed if its IBR-cost is

high with respect to the novel view.

can select views surrounding V𝑛 with a more uniform distribution

and is empirically beneficial to the view-blending. With this setting,

there will be 72 views in maximum. However, due to the distance

conditions, it is usually around 20 views selected.

It is also important to maintain the overlap between selected

views for V𝑛 and that for previous view V𝑛−1 to reduce the temporal

flickers. We achieve this by delaying the removal of selected views at

V𝑛−1. Precisely, we first calculate 𝛿∠(R𝑧𝑘 ,R
𝑧
𝑛) and 𝛿 ‖t𝑘−t𝑛 ‖ between

V𝑛 and V𝑛−1, then add them to corresponding sub-region conditions.

The selected views at V𝑛−1 that satisfies the updated conditions are

also selected for V𝑛 .

Front-most Depth Map (FMDP) Generation: The FMDP is used

in fuzzy depth test: If the absolute distance between the depth of a

pixel and the corresponding depth in the FMDP is less than 3cm, this

pixel is deemed to be visible at V𝑛 and will be used in view-blending.

Given the view selection result, we can blend the depth maps

generated by rendering the meshes of these views at V𝑛 to obtain

FMDP. However, floating geometry, i.e., the geometry errors, of

per-view meshes will downgrade the blended depth map’s quality

and lead to incorrect depth test results. Thus, for pixels with large

depth value variances, we utilize per-pixel IBR-cost to reduce the

influence of floating geometry [Hedman et al. 2018]. That is, we first

determine the least IBR-cost from the 3D point projected to the same

pixel of V𝑛 and then only keep those points whose difference of its

IBR-cost to the least IBR-cost is less than a threshold (default 0.17).

The minimal depth of these remained 3D points is then selected to

be the front-most depth. The IBR-cost is defined in the same way as

in [Hedman et al. 2016]:

𝑐 (t𝑘 , t𝑛, x) = ∠ (t𝑘 − x, t𝑛 − x) ∗ 𝜋/180 (12)

+max (0, 1 − ‖t𝑛 − x‖/‖t𝑘 − x‖)

where x is a 3D point. As shown in Fig. 6, this modification can

reduce the influence of floating geometry, especially when depth

edges might be missed in depth-color edge alignment, if there is no

color edges close to the depth edges.

View blending: We render per-view textured two-layer mesh of

selected views at V𝑛 and then blend the rendered surface and reflec-

tion images separately. The fuzzy depth test is first used to remove

hidden triangles before blending, and the blending weight for a

selected view V𝑘 is defined as follows:

𝑤𝑘 = exp(−𝑑𝑘/𝛿) (13)

where 𝛿 is set to 0.033 in our implementation. This weighting scheme

favors those views close to V𝑛 in view warping, and the blending

1
0

Blending weight

2D Surface

(a) The effect of depth edge weight decay

Original image

Warped image w/o weight decay w/ weight decay

(b) Hole filling

Fig. 7. (a)We decay the weights near occlusion edges to improve the smooth-

ness of view blending. (b) We leverage tile-based rendering [Hedman et al.

2016] to render the pixels inside a hole, and also blend the rendering result

with the rest view warping result with weight decay at the hole boundary.

weight is the same for surface and reflection layer images. To avoid

discontinuity artifact, we first apply image feathering, a weight

decay operation often used in image stitching, near the warped

image boundaries [Szeliski 2006]. It is achieved by decreasing the

blending weight𝑤𝑘 smoothly to 0 within 20-pixel distance to the

image boundaries, which is efficient to remove discontinuity caused

by color variation among images. Second, we also exploit weight

decay to decrease the weight of pixels near depth edges (± 5 pixels

distance to the depth edges along edge gradients), since these pixels

might contain noise and be warped to semantically different objects

in the scene, as shown in Fig. 7. The weight decay can reduce the

weight for such pixels, and those warped pixels far from the depth

edge in another view will contribute more to the final RGB value.

All the decayed weights are stored in the alpha channel of mesh

textures.

There might be small-area holes left after the camera-poses-based

view blending, as shown in Fig. 7(a). For pixels inside holes, we

leverage the tile-based rendering method in [Hedman et al. 2016] to

render the voxels and their eight neighbors that intersect with the

surface of these pixels.

6 DSRNET

While per-view depth refinement can significantly improve mesh

quality, there are still inaccurate geometries after edge-aware in-

terpolation. As a result, the rendering results of the two-layer view

warping algorithm inevitably contain a few artifacts, such as ghost-

ing or zigzag at object boundaries. We thus develop the DSRNet

that non-trivially adapt the real-time, super-sampling network (RSS-

Net) in [Xiao et al. 2020] to improve the quality and resolution of

rendered images at a novel view V𝑛 . The overall structure of our

DSRNet is similar to RSSNet, which also has three modules: feature

extraction, re-weighting, and reconstruction. However, the DSRNet

differs from RSSNet in two aspects. First, we add a motion vector

refinement (MVR) module to correct the correspondence errors

caused by inaccurate geometry before re-weighting. It can improve

, Vol. 1, No. 1, Article . Publication date: January 2021.

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

Scalable Image-based Indoor Scene Rendering with Reflections • 9

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

Motion Vector Refinement (MVR)

Skip connection
Feature extraction (current)

Feature reweighting

Reconstruction

Feature extraction (previous)

Motion vector refinementRGBD

RGBD

32 32 8

32 32 8

32 32 1

Output put ut ut
Skip connection

64 32 64 64 128 128 64 64 32 3 24

24 24 24 24 2

Backward
warping

MVR

Fig. 8. Network architecture of our method. Our network consists of four modules, including feature extraction, re-weighting, reconstruction and motion

vector refinement(MVR). The numbers on each network layer represent the output channels. In reconstruction module, the height (H) and width (W) of output

features are marked under corresponding network layers. The kernel size is 3 × 3 at all layers excepts the first layer of MVR, whose kernel size is 5 × 5 instead.

the correspondence between the previous view V𝑛−1 and V𝑛 . Con-

sequently, the output image quality is improved. Second, although

the DSRNet allows us to store textures of 1/4 resolution, namely

𝐻/2 ×𝑊 /2, of the rendered image of resolution 𝐻 ×𝑊 to save the

memory storage, we found there would be more aliasing artifacts

near occlusion edges if we render 1/4 resolution image in two-layer

view warping algorithm as the input of the DSRNet. Hence, we

choose to construct per-view meshes using high-resolution (HR) im-

ages and preserve mesh edges as-much-as possible on the occlusion

edges during mesh simplification. Meanwhile, during rendering,

with 1/4 resolution textures, we render blurred images of the resolu-

tion 𝐻 ×𝑊 using two-layer view warping algorithm, which reduces

aliasing in the DSRNet output further.

Network Architecture: Fig. 8 shows the architecture of our net-

work. For the three modules in the original RSSNet [Xiao et al.

2020], such as feature extraction, re-weighting, and reconstruction

modules, the convolutional kernel size is 3 × 3 at all layers. The

feature extraction module has three convolutional layers, and each

of them is followed by a nonlinear activation ReLU layer. The re-

weighting module also has three convolutional layers. However, it

uses Tanh as the activation function at its last layer, which is fol-

lowed by a scaling operation to map the output values from (−1, 1)
to (0, 10). The reconstruction module is a 10-layer U-net with three

scales [Ronneberger et al. 2015]. In the reconstruction module, we

use max-pooling for downsampling and bilinear interpolation for

upsampling.

Due to the existence of floating or inaccurate geometry at each

view, simply warping the color image of the previous frame In−1 to

V𝑛 by the per-view mesh might lead to inaccurate correspondence,

resulting in the degradation of the output image. Therefore, the

MVR module is designed to refine the depth-based motion vector

Md used to warp In−1 before the re-weighting module. This module

takes depth-based motion vector Md, color image of current frame

In (rendered at V𝑛 using the two-layer IBR algorithm), previous

frame In−1, and warped previous frame I′
n−1 as input, and aims to

predict offsets to correct the motion vectorsMd:

M𝑟 = M𝑑 +MVR(I𝑛, I𝑛−1, I
′
𝑛−1,M𝑑) (14)

where Mr are the refined motion vector. Since MVR is designed for

motion vector fine-tuning, the output of MVR is limited to [−5, 5]
pixels by mapping original MVR output 𝑥 to tanh(𝑥) ∗ 5.

Training Losses: The training loss of our method is same as [Xiao

et al. 2020], which is the weighted combination of structural sim-

ilarity index (SSIM) and perceptual loss. More formally, the total

training loss is as follows:

L (x, x̂) = 1 − SSIM (x, x̂) +𝑤 ·

5∑
𝑖=1

| |conv𝑖 (x) − conv𝑖 (x̂) | |
2
2 (15)

where x and x̂ are the captured ground-truth images and network

output respectively. Here weight𝑤 is used to balance the two losses

and in most of our experiments,𝑤 = 0.1.
As to the MVR module, we use a warping loss to supervise its

training as follows:

L𝑤𝑎𝑟𝑝 = L1
(
G (I𝑛) ,G

(
I
′
𝑛−1

))
+ L1

(
I𝑛, I

′
𝑛−1

)
(16)

where 𝐿1(·) denotes the L1 Loss and 𝐺 (·) is the Gaussian filter

with 5 × 5 kernels. Here Gaussian Filter is used to smooth the local

gradient and avoid gradient vanishing for not color edge pixels.

7 IMPLEMENTATION DETAILS

Per-view reflection decomposition: Since there should be a large

number of optimization variables to represent surface and reflection

layer RGBD images in Eq. 4, we apply conjugate gradient (CG) with

Polak-Ribiére updates [Nocedal and Wright 2006] to alternatively

solve for I
0,1
𝑘

and D
0,1
𝑘
. During the step to optimize for I

0,1
𝑘
, we

clip the gradient of each pixel to be in the range ([0..1]). In all our

experiments, we fix CG iteration number to be 30 to balance between

the energy reduction and time consumption.

Two-layer IBR Rending: All the mesh textures are stored using

RGBA DXT5 compression format, which also provides the 4:1 com-

pression ratio. The alpha channel is used to store the weight de-

cay near image boundaries and occlusion edges and the mask of

highlight pixels (1 bit packed into the 8bit alpha channel). During

rendering, the highlight pixels will not composite with the surface

layer since it will lead to the degradation of the rendered highlight.

In this case, we ignore the surface layer color and only use the re-

flection layer pixels in the area with detected highlights warped to

the novel view V𝑛 . Each per-view mesh is simplified, and we use

unsigned short to store the vertex indices to reduce storage further.

SR Network Training: We train the SR network with the MVR

module using 512 ∗ 512 random crops from the captured indoor

scene images and set batch size to 8. The optimizer for the training

, Vol. 1, No. 1, Article . Publication date: January 2021.

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

10 • Anon. Submission Id: 445

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

optimization Rendering result

Solve (1st iter) Solve (2nd iter)Solve

-100

100

300

500

700

900

1100

1300

1500

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Decomposition Energy vs Iteration

Initial

Before After

optimization

Fig. 9. Convergence curve of the alternative optimization algorithm for re-

flection decomposition. The rendering results before and after optimization

are shown in the last two images in second row.

Scenes Area(𝑚2) #Img Img/Mesh Storage(GB)

Hotel Room 7.0 ∗ 4.4 1741 0.55 / 1.89 (1.61+0.28)

Living Room 1 8.2 ∗ 6.3 2289 0.72 / 2.48 (2.17+0.31)

Living Room 2 12.3 ∗ 8.1 2782 0.88 / 3.04 (2.40+0.64)

Meeting Room 1 11.2 ∗ 6.5 1631 0.52 / 1.84 (1.61+0.23)

Meeting Room 2 13.3 ∗ 10.4 998 0.32 / 1.22 (0.88+0.34)

Table 1. Statistics of reconstructed indoor scenes. #Img denotes the num-

ber of total images captured in the scene. Img/Mesh Storage denotes the

memory storage for down-sampled texture images and two-layer meshes.

Numbers in brackets indicate the memory storage for surface and reflection

layer meshes respectively.

is ADAMmethod [Kingma and Ba 2015], and the learning rate is set

to 1 × 10−4 at the beginning and decayed by a factor of 0.95 every

20 epochs. The number of epochs used to train the network is 300.

8 EXPERIMENTS

We have implemented our IBR pipeline on a desktop PC with a

4.20GHz Intel Core i7-7700K CPU and an NVIDIA RTX 2080Ti GPU.

The DSRNet is trained on a GPU server with two NVIDIA RTX

2080Ti GPU cards. The forward inference of the network is acceler-

ated by Nvidia TensorRT [Nvidia 2018] with 16-bit precision. All the

per-view two-layer meshes are stored in GPU memory. We utilize

OpenGL/CUDA interop interface to interchange rendering buffer

and network tensor data at GPU memory directly during online

rendering. Our pipeline’s average running time to render an image

of resolution 1280×960 is 49.1ms, including 30.7ms for view warping

and 18.4ms for the DSRNet inference.

To evaluate our pipeline, we have applied it to render five re-

constructed indoor scenes with different sizes, types, and reflection

scenarios, including one hotel room, two living rooms, and two

meeting rooms (see Table. 1). We train DSRNet separately for each

scene, using 90% of the captured images as the training dataset and

the remaining 10% as the validation set. In this section, we will re-

port the evaluation results of reflection decomposition, DSRNet, and

the rendering result comparisons with state-of-the-art IBR methods.

Please also see the accompanying video for the video comparisons.

Reference image Ours [Sinha et al.2012] [Liu et al. 2020]

Fig. 10. Reflection decomposition comparison.

Alternative optimization without highlight detection

Neighboring images

Reference image

Detection

2nd Iter.

2nd Iter.1st Iter.

1st Iter.

Alternative optimization with highlight detection

Fig. 11. Two-layer decomposition with highlight detection. Red regions on

the top-right of reference image indicate the detected highlights. Without

highlight detection, the highlights in neighboring views will lead to spread-

ing artifacts as shown in the decomposed foreground surface image in top

row.
TV Screen

Mirror

Fig. 12. Reflection decomposition results of a TV screen and a mirror.

8.1 Evaluation of the Reflection Decomposition Algorithm

Fig. 9 illustrates the convergence curve of the alternating optimiza-

tion algorithm for reflection decomposition. The energy defined in

Eq. 4 gradually decreases with each CG iteration when optimizing

for I0,1
𝑘

at the beginning. After 30 iterations, the algorithm contin-

ues with optimizing for M0,1
𝑘

and (R,T)1
𝑘
, leading to the further

decline of the energy function. Usually, the alternating optimization

algorithm converges with two outer iterations to optimize for I0,1
𝑘

alternatively. The red arrow in Fig. 9 is used to emphasize the effect

of the optimization ofM1
𝑘
. It can be seen that the rendering result

using the optimized I
0,1
𝑘

and M
1
𝑘
is sharp and free of misalignment

artifacts in highlights caused by view warping with initialized two-

layer meshes and images. A comparison in Fig. 10 shows that, with

prior geometry, our reflection decomposition result is superior to

the results of reflection removal algorithms based on semi-global

stereo [Sinha et al. 2012] and deep-learning [Liu et al. 2020b]. We

hypothesize that the failure of the algorithm in [Sinha et al. 2012] is

due to the difficulty to reliably estimate the two-layer depth using

semi-global stereo algorithm [Hirschmuller 2008]. Since we do not

capture the images continuously as in videos, it is also challeng-

ing to estimate dense optical flows for surface and reflection layers

required in [Liu et al. 2020b].

, Vol. 1, No. 1, Article . Publication date: January 2021.

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

Scalable Image-based Indoor Scene Rendering with Reflections • 11

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

Fig. 13. View warping vs. DSRNet. For each pair, the image on the left is

produced by our view warping algorithm, and the image on the right is

produced by the DSRNet. The blurring and aliasing at object boundaries

are effectively removed by the DSRNet.

w/o w/o w/ow/w/ w/

Fig. 14. The improvement of object boundary rendering quality using the

MVR module. W/: with MVR. W/O: without MVR.

In Fig. 11, we show how the highlight detection influences the

reflection decomposition result. If we use the linear composition rule

in this case, the highlights in neighboring views will lead to artifacts

in the foreground surface image, resulting in a large area of artifacts

in the decomposed surface image. The artifacts are corrected after

ignoring the composition energy terms inside the detected regions

with highlights. The holes inside the highlights of the decomposed

surface image are filled by the global consistency step. Fig. 12 shows

the two-layer image and mesh construction results of a TV screen

and a mirror. Since we enforce the RGB of I0
𝑘
of mirrors to be zero,

a color-less assumption for mirrors, we did not show black I
0
𝑘
for

the mirror. The TV screen’s depth can be scanned with Kinect4 due

to its surface matte. It benefits the initialization of the surface layer

mesh and helps to obtain high-quality reflection decomposition, as

shown in the top-row of Fig. 12.

8.2 Evaluation of DSRNet

After training, the DSRNet can produce sharp, high-quality HR im-

ages at novel viewpoints. As illustrated in Fig. 13, although the im-

ages from view warping are blurred and have alias artifacts around

edges, the image quality can be effectively enhanced by the DSR-

Net. Moreover, Fig. 14 illustrates that the designed MVR module

is beneficial to remove the ghosting artifacts caused by inaccurate

geometries.

Ablation Study:We perform ablation studies to evaluate the influ-

ence of the MVR module and loss terms on the DSRNet. As shown

in Table 2, the network with the MVR module can improve PSNR

values for all our reconstructed scenes and is beneficial to the im-

provement of the SSIM metric. In Fig. 14, we show that the ghosting

artifacts indicated by the red arrows can be corrected after integrat-

ing the MVR module into the DSRNet. Moreover, we remove each

loss term to evaluate its influence on the network. The evaluation

HR mesh + HR input image

HR mesh LR mesh

LR mesh + LR input imageHR mesh + LR input image

Fig. 15. The influence ofmesh and input image resolution to DSRNet. HR/LR

mesh: mesh constructed using high/low resolution depth map. HR/LR input

image: generate high-resolution or low-resolution images with viewwarping.

HR mesh + HR input image leads to better rendering quality. Please also

see accompanying video for the comparison.

W/ MVR W/O MVR

Scene PSNR↑ SSIM↑ PSNR↑ SSIM↑

Hotel Room 33.57106 0.96860 33.20517 0.96856

Living Room 1 31.35471 0.96757 31.35119 0.96785

Living Room 2 30.01572 0.95905 29.43158 0.95892

Meeting Room 1 30.46487 0.98267 29.96584 0.98134

Meeting Room 2 31.37820 0.96296 30.73507 0.96277

Table 2. MVR ablation study

Only VGG Only SSIM SSIM+VGG

PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑

28.13277 0.95896 33.18738 0.96884 33.57106 0.96860

Table 3. Loss term ablation study.

results on the hotel room scene for this ablation study are shown in

Table 3. They verify that both VGG loss and L1 loss are essential to

the quality of the rendered images.

The influence of view warping result on the DSRNet: As de-

scribed in Sec. 6, althoughwe store textures in 1/4 resolution (640x480),

we choose to generate images with original HR (1280x960) resolu-

tion in view-warping to reduce aliasing and flickers near occlusion

edges. In Fig. 15, we show that generating HR images with per-view

meshes constructed with HR images can achieve superior rendering

results. The reason we choose to construct mesh with HR images is

to preserve the edges on occlusion edges. Therefore, the occlusion

edge details of the HR RGBD images can be better preserved, which

facilitates the DSRNet to produce high-quality images. It can be

seen the mesh constructed on LR RGBD images has much fewer

boundary edges, leading to blurring or aliasing artifacts around oc-

clusion edges. Furthermore, we found it is also beneficial to recover

occlusion edge details if generating HR images in view warping.

8.3 Rendering Results and Comparisons

To demonstrate the advantage of our pipeline, we compare our

method against state-of-the-art view synthesis methods, such as In-

sideOut [Hedman et al. 2016],DeepBlending [Hedman et al. 2018],

Neural Rerendering in the Wild (NRW) [Meshry et al. 2019],

LLFF [Mildenhall et al. 2019], NeRF [Mildenhall et al. 2020] and

FVS [Riegler and Koltun 2020a]. For fair comparisons, we use cap-

tured high-resolution images plus our constructed per-view meshes

as the input of InsideOut and DeepBlending. For NRW, we use a

, Vol. 1, No. 1, Article . Publication date: January 2021.

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

12 • Anon. Submission Id: 445

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

Ours Crops(ours) InsideOut DeepBlending NRW FVS
Fig. 16. Rendering result comparisons with InsideOut [Hedman et al. 2016],DeepBlending [Hedman et al. 2018] ,NRW [Meshry et al. 2019] and FVS [Riegler

and Koltun 2020a].

Scene Metric

Deep

Blending

Inside

Out
NRW FVS Ours

Hotel

Room

PSNR↑ 32.90 31.56 31.11 27.26 33.57

SSIM↑ 0.881 0.880 0.831 0.835 0.968

Living

Room 1

PSNR↑ 31.33 29.99 30.13 25.54 31.35

SSIM↑ 0.875 0.881 0.828 0.833 0.968

Living

Room 2

PSNR↑ 29.04 29.77 27.93 25.32 30.40

SSIM↑ 0.828 0.827 0.785 0.808 0.961

Meeting

Room 1

PSNR↑ 29.86 29.19 25.70 24.61 30.46

SSIM↑ 0.926 0.934 0.875 0.871 0.983

Meeting

Room 2

PSNR↑ 31.70 30.27 29.57 26.38 31.38

SSIM↑ 0.865 0.871 0.802 0.809 0.963

Table 4. Quantitative comparisons.

textured global mesh generated by RealityCapture to render the

input color and depth images. The required semantic map is ob-

tained by segmenting the image with indoor scene class labels using

the network provided by NRW. Furthermore, as our DSRNet is

trained for each scene to improve rendering quality, we also fine-

tune the networks of DeepBlending and FVS for the comparisons.

As shown in Fig. 16, our method outperforms other methods on

Our NeRFLLFF
Fig. 17. Comparisons with LLFF [Mildenhall et al. 2019] andNeRF [Milden-

hall et al. 2020].

the rendering quality of reflections. With the developed reflection

decomposition algorithm and the DSRNet, our system also achieves

sharper rendering results. The quantitative comparisons conducted

on the five reconstructed scenes are shown in Table 4, where our

pipeline achieves the best performance over state-of-the-art meth-

ods on the validation datasets.

, Vol. 1, No. 1, Article . Publication date: January 2021.

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

Scalable Image-based Indoor Scene Rendering with Reflections • 13

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

Fig. 17 illustrates the comparisons with LLFF and NeRF. While

these two methods can render high-quality images, it is still chal-

lenging for them to handle the high-frequency signals, such as

reflections and check patterns, resulting in obvious blurring arti-

facts. In contrast, our geometry-based IBR pipeline can produce

sharp images in these challenging cases.

9 CONCLUSIONS AND DISCUSSIONS

We have developed an IBR pipeline for the image-based rendering

of indoor scenes with reflections. It has two main technical compo-

nents: global-mesh-guided robust two-layer mesh construction and

DSRNet based rendering pipeline to save memory storage. We also

design a view-warping algorithm to produce temporally smooth

images during free-viewpoint navigation as the input of DSRNet.

Our pipeline can handle various types of reflections and achieve

high-quality rendering results. Its running time with NVIDIA RTX

2080Ti GPU is below 50ms on average, suitable for interactive virtual

reality applications.

A limitation of our current pipeline is that it can not handle

curved mirrors or reflective surfaces. Empirically, a curved reflec-

tive surface can be approximated by many piece-wise triangles, and

we can construct a reflection layer mesh for each triangle. However,

the memory cost of this simple extension is high, and the rendering

speed is substantially reduced. Rendering an environmentmap using

our IBR pipeline for a curved reflective surface can be an alternative

method to simulate its reflection. Another challenge to our pipeline

is rendering the glasses that have both background transmissions

and reflections. The linear composition rule used in our paper is

only for reflective surface and its reflections. We might need to

extend it to three layers, including transmissions, reflections, and

possible opaque or transparent materials, such as papers or stickers,

on the glasses, to handle the rendering of glasses. Currently, our

rendering pipeline mainly works in RGB space, and the lightweight

DSRNet is selected for the rendering speed. In the future, it would

be interesting to investigate how to integrate feature space repre-

sentation, similar to neural texture [Thies et al. 2019b] and stable

view synthesis [Riegler and Koltun 2020b], into the pipeline to bal-

ance between the rendering speed and the robustness to inaccurate

geometry in IBR.

REFERENCES
Michael Broxton, John Flynn, Ryan Overbeck, Daniel Erickson, Peter Hedman, Matthew

Duvall, Jason Dourgarian, Jay Busch, Matt Whalen, and Paul Debevec. 2020. Immer-
sive Light Field Video with a Layered Mesh Representation. ACM Trans. Graph. 39,
4, Article 86 (July 2020), 15 pages.

Chris Buehler, Michael Bosse, Leonard McMillan, Steven Gortler, and Michael Cohen.
2001. Unstructured lumigraph rendering. In Proceedings of the 28th annual conference
on Computer graphics and interactive techniques. 425–432.

Jose Caballero, Christian Ledig, Andrew P. Aitken, Alejandro Acosta, Johannes Totz,
Zehan Wang, and Wenzhe Shi. 2017. Real-Time Video Super-Resolution with Spatio-
Temporal Networks and Motion Compensation.. In CVPR. IEEE Computer Society,
2848–2857.

CapturingReality. 2016. Reality capture, http://capturingreality.com.
R. O. Cayon, A. Djelouah, and G. Drettakis. 2015. A Bayesian Approach for Selective

Image-Based Rendering Using Superpixels. In 2015 International Conference on 3D
Vision. 469–477.

Chakravarty R. Alla Chaitanya, Anton S. Kaplanyan, Christoph Schied, Marco Salvi,
Aaron Lefohn, Derek Nowrouzezahrai, and Timo Aila. 2017. Interactive Reconstruc-
tion of Monte Carlo Image Sequences Using a Recurrent Denoising Autoencoder.
ACM Trans. Graph. 36, 4, Article 98 (2017), 12 pages.

Gaurav Chaurasia, Sylvain Duchene, Olga Sorkine-Hornung, and George Drettakis.
2013. Depth synthesis and local warps for plausible image-based navigation. ACM
Transactions on Graphics (TOG) 32, 3 (2013), 1–12.

Gaurav Chaurasia, Olga Sorkine, and George Drettakis. 2011. Silhouette-AwareWarping
for Image-Based Rendering. In Computer Graphics Forum, Vol. 30. Wiley Online
Library, 1223–1232.

Shenchang Eric Chen and LanceWilliams. 1993. View Interpolation for Image Synthesis.
In Proceedings of the 20th Annual Conference on Computer Graphics and Interactive
Techniques (Anaheim, CA) (SIGGRAPH ’93). Association for Computing Machinery,
New York, NY, USA, 279–288. https://doi.org/10.1145/166117.166153

Tao Chen, Zhe Zhu, Ariel Shamir, Shi-Min Hu, and Daniel Cohen-Or. 2013. 3-Sweep:
Extracting Editable Objects from a Single Photo. ACM Trans. Graph. 32, 6, Article
195 (Nov. 2013), 10 pages.

Paul E Debevec, Camillo J Taylor, and Jitendra Malik. 1996. Modeling and rendering
architecture from photographs: A hybrid geometry-and image-based approach.
In Proceedings of the 23rd annual conference on Computer graphics and interactive
techniques. 11–20.

Mathieu Desbrun, Mark Meyer, Peter Schröder, and Alan H. Barr. 1999. Implicit Fairing
of Irregular Meshes Using Diffusion and Curvature Flow. In Proceedings of the 26th
Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH
’99). 317–324.

Chao Dong, Chen Change Loy, Kaiming He, and Xiaoou Tang. 2014. Learning a deep
convolutional network for image super-resolution. In Computer Vision–ECCV 2014.
Springer, 184–199.

Siyan Dong, Kai Xu, Qiang Zhou, Andrea Tagliasacchi, Shiqing Xin, Matthias Nießner,
and Baoquan Chen. 2019. Multi-Robot Collaborative Dense Scene Reconstruction.
ACM Trans. Graph. 38, 4, Article 84 (July 2019), 16 pages. https://doi.org/10.1145/
3306346.3322942

Andrew Edelsten, Paula Jukarainen, and Anjul Patney. 2019. Truly next-gen: Adding
deep learning to games and graphics. In In NVIDIA Sponsored Sessions (Game Devel-
opers Conference).

John Flynn, Michael Broxton, Paul Debevec, Matthew DuVall, Graham Fyffe, Ryan
Overbeck, Noah Snavely, and Richard Tucker. 2019. Deepview: View synthesis with
learned gradient descent. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition. 2367–2376.

John Flynn, Ivan Neulander, James Philbin, and Noah Snavely. 2016. Deepstereo:
Learning to predict new views from the world’s imagery. In Proceedings of the IEEE
conference on computer vision and pattern recognition. 5515–5524.

Dario Fuoli, Shuhang Gu, and Radu Timofte. 2019. Efficient Video Super-Resolution
through Recurrent Latent Space Propagation. In 2019 IEEE International Conference
on Computer Vision Workshop (ICCVW). 3476–3485.

Y. Furukawa, B. Curless, S. M. Seitz, and R. Szeliski. 2009. Reconstructing building
interiors from images. In 2009 IEEE 12th International Conference on Computer Vision.
80–87.

Y. Furukawa and J. Ponce. 2010. Accurate, Dense, and Robust Multiview Stereopsis. IEEE
Transactions on Pattern Analysis and Machine Intelligence 32, 8 (2010), 1362–1376.

Michael Garland and Paul S. Heckbert. 1997. Surface Simplification Using Quadric
Error Metrics. In Proceedings of the 24th Annual Conference on Computer Graphics
and Interactive Techniques (SIGGRAPH ’97). ACM Press/Addison-Wesley Publishing
Co., USA, 209–216. https://doi.org/10.1145/258734.258849

Michael Goesele, Jens Ackermann, Simon Fuhrmann, Carsten Haubold, Ronny Klowsky,
Drew Steedly, and Richard Szeliski. 2010. Ambient Point Clouds for View Interpo-
lation. In ACM SIGGRAPH 2010 Papers (Los Angeles, California) (SIGGRAPH ’10).
Association for Computing Machinery, New York, NY, USA, Article 95, 6 pages.

Michael Goesele, Noah Snavely, Brian Curless, Hugues Hoppe, and Steven M. Seitz.
2007. Multi-View Stereo for Community Photo Collections.. In ICCV. IEEE Computer
Society, 1–8.

Steven J Gortler, Radek Grzeszczuk, Richard Szeliski, and Michael F Cohen. 1996. The
lumigraph. In Proceedings of the 23rd annual conference on Computer graphics and
interactive techniques. 43–54.

Xiaojie Guo, Xiaochun Cao, and Yi Ma. 2014. Robust separation of reflection from
multiple images. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition. 2187–2194.

Muhammad Haris, Gregory Shakhnarovich, and Norimichi Ukita. 2019. Recurrent
Back-Projection Network for Video Super-Resolution. In 2019 IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR). 3892–3901.

R. I. Hartley and A. Zisserman. 2004. Multiple View Geometry in Computer Vision
(second ed.). Cambridge University Press, ISBN: 0521540518.

Peter Hedman, Suhib Alsisan, Richard Szeliski, and Johannes Kopf. 2017. Casual 3D
Photography. ACM Trans. Graph. 36, 6, Article 234 (Nov. 2017), 15 pages.

Peter Hedman, Julien Philip, True Price, Jan-Michael Frahm, George Drettakis, and
Gabriel Brostow. 2018. Deep blending for free-viewpoint image-based rendering.
ACM Transactions on Graphics (TOG) 37, 6 (2018), 1–15.

Peter Hedman, Tobias Ritschel, George Drettakis, and Gabriel Brostow. 2016. Scalable
inside-out image-based rendering. ACM Transactions on Graphics (TOG) 35, 6 (2016),
1–11.

, Vol. 1, No. 1, Article . Publication date: January 2021.

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

14 • Anon. Submission Id: 445

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

H. Hirschmuller. 2008. Stereo Processing by Semiglobal Matching and Mutual Infor-
mation. IEEE Transactions on Pattern Analysis and Machine Intelligence 30, 2 (2008),
328–341.

M. Jancosek and T. Pajdla. 2011. Multi-view reconstruction preserving weakly-
supported surfaces. In CVPR 2011. 3121–3128.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic Optimization.
CoRR abs/1412.6980 (2015).

Johannes Kopf, Fabian Langguth, Daniel Scharstein, Richard Szeliski, and Michael
Goesele. 2013. Image-based rendering in the gradient domain. ACM Transactions on
Graphics (TOG) 32, 6 (2013), 1–9.

C. Ledig, L. Theis, F. Huszár, J. Caballero, A. Cunningham, A. Acosta, A. Aitken, A.
Tejani, J. Totz, Z. Wang, and W. Shi. 2017. Photo-Realistic Single Image Super-
Resolution Using a Generative Adversarial Network. In 2017 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR). 105–114.

Marc Levoy and Pat Hanrahan. 1996. Light field rendering. In Proceedings of the 23rd
annual conference on Computer graphics and interactive techniques. 31–42.

Yu Li andMichael S. Brown. 2013. Exploiting Reflection Change for Automatic Reflection
Removal. In 2013 IEEE International Conference on Computer Vision (ICCV).

Jiaying Lin, Guodong Wang, and Rynson WH Lau. 2020. Progressive Mirror Detection.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
3697–3705.

D. B.* Lindell, J. N. P.* Martel, and G. Wetzstein. 2020. AutoInt: Automatic Integration
for Fast Neural Volume Rendering. arXiv preprint arXiv:2012.01714 (2020).

Lingjie Liu, Jiatao Gu, Kyaw Zaw Lin, Tat-Seng Chua, and Christian Theobalt. 2020a.
Neural Sparse Voxel Fields. NeurIPS (2020).

Yu-Lun Liu, Wei-Sheng Lai, Ming-Hsuan Yang, Yung-Yu Chuang, and Jia-Bin Huang.
2020b. Learning to See Through Obstructions. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 14215–14224.

Stephen Lombardi, Tomas Simon, Jason Saragih, Gabriel Schwartz, Andreas Lehrmann,
and Yaser Sheikh. 2019. Neural volumes: Learning dynamic renderable volumes
from images. arXiv preprint arXiv:1906.07751 (2019).

Wojciech Matusik, Chris Buehler, Ramesh Raskar, Steven J. Gortler, and Leonard McMil-
lan. 2000. Image-Based Visual Hulls (SIGGRAPH ’00). ACM Press/Addison-Wesley
Publishing Co., USA, 6. https://doi.org/10.1145/344779.344951

Wojciech Matusik, Hanspeter Pfister, Addy Ngan, Paul Beardsley, Remo Ziegler, and
Leonard McMillan. 2002. Image-Based 3D Photography Using Opacity Hulls. ACM
Trans. Graph. 21, 3 (July 2002), 427–437. https://doi.org/10.1145/566654.566599

Moustafa Meshry, Dan B Goldman, Sameh Khamis, Hugues Hoppe, Rohit Pandey,
Noah Snavely, and Ricardo Martin-Brualla. 2019. Neural rerendering in the wild.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
6878–6887.

Ben Mildenhall, Pratul P Srinivasan, Rodrigo Ortiz-Cayon, Nima Khademi Kalantari,
Ravi Ramamoorthi, Ren Ng, and Abhishek Kar. 2019. Local light field fusion: Practical
view synthesis with prescriptive sampling guidelines. ACM Transactions on Graphics
(TOG) 38, 4 (2019), 1–14.

Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ra-
mamoorthi, and Ren Ng. 2020. Nerf: Representing scenes as neural radiance fields
for view synthesis. arXiv preprint arXiv:2003.08934 (2020).

Jorge Nocedal and Stephen J. Wright. 2006. Numerical Optimization (second ed.).
Springer, New York, NY, USA.

Nvidia. 2017-2018. Nvidia Corporation. TensorRT. https://developer.nvidia.com/
tensorrt.

Eric Penner and Li Zhang. 2017. Soft 3D reconstruction for view synthesis. ACM
Transactions on Graphics (TOG) 36, 6 (2017), 1–11.

N. C. Rakotonirina and A. Rasoanaivo. 2020. ESRGAN+ : Further Improving Enhanced
Super-Resolution Generative Adversarial Network. In ICASSP 2020 - 2020 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP). 3637–
3641.

Jerome Revaud, Philippe Weinzaepfel, Zaid Harchaoui, and Cordelia Schmid. 2015.
Epicflow: Edge-preserving interpolation of correspondences for optical flow. In
Proceedings of the IEEE conference on computer vision and pattern recognition. 1164–
1172.

C. Rhemann, A. Hosni, M. Bleyer, C. Rother, and M. Gelautz. 2011. Fast cost-volume
filtering for visual correspondence and beyond. In CVPR 2011. 3017–3024.

Gernot Riegler and Vladlen Koltun. 2020a. Free View Synthesis. In European Conference
on Computer Vision.

Gernot Riegler and Vladlen Koltun. 2020b. Stable View Synthesis.
arXiv:2011.07233 [cs.CV]

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. 2015. U-Net: Convolutional
Networks for Biomedical Image Segmentation. In International Conference onMedical
Image Computing and Computer-Assisted Intervention.

Mehdi S. M. Sajjadi, Raviteja Vemulapalli, and Matthew Brown. 2018. Frame-Recurrent
Video Super-Resolution. In 2018 IEEE Conference on Computer Vision and Pattern
Recognition. 6626–6634.

R. Schnabel, R. Wahl, and R. Klein. 2007. Efficient RANSAC for Point-Cloud Shape
Detection. Computer Graphics Forum 26, 2 (2007), 214–226.

J. L. Schönberger and J. Frahm. 2016. Structure-from-Motion Revisited. In 2016 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR). 4104–4113.

Johannes L. Schönberger, Enliang Zheng, Jan-Michael Frahm, and Marc Pollefeys. 2016.
Pixelwise View Selection for Unstructured Multi-View Stereo.. In ECCV (Lecture
Notes in Computer Science, Vol. 9907). Springer, 501–518.

Jonathan Shade, Steven Gortler, Li-wei He, and Richard Szeliski. 1998. Layered depth
images. In Proceedings of the 25th annual conference on Computer graphics and
interactive techniques. 231–242.

HHeung-Yeung Shum and Sing Bing Kang. 2000. A Review of Image-based Rendering
Techniques. Technical Report. Microsoft.

Sudipta N Sinha, Johannes Kopf, Michael Goesele, Daniel Scharstein, and Richard
Szeliski. 2012. Image-based rendering for scenes with reflections. 31, 4 (2012), 1–10.

S. N. Sinha, D. Steedly, and R. Szeliski. 2009. Piecewise planar stereo for image-based
rendering. In 2009 IEEE 12th International Conference on Computer Vision. 1881–1888.

Vincent Sitzmann, Michael Zollhöfer, and GordonWetzstein. 2019. Scene representation
networks: Continuous 3d-structure-aware neural scene representations. In Advances
in Neural Information Processing Systems. 1121–1132.

Pratul P Srinivasan, Richard Tucker, Jonathan T Barron, Ravi Ramamoorthi, Ren Ng,
and Noah Snavely. 2019. Pushing the boundaries of view extrapolation with multi-
plane images. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. 175–184.

Richard Szeliski. 2006. Image Alignment and Stitching: A Tutorial. MSR-TR-2004-92.
Xin Tao, Hongyun Gao, Renjie Liao, Jue Wang, and Jiaya Jia. 2017. Detail-Revealing

Deep Video Super-Resolution. In ICCV. IEEE Computer Society, 4482–4490.
Natasha Tatarchuk, Brian Karis, Michal Drobot, Nicolas Schulz, Jerome Charles, and

Theodor Mader. 2014. Advances in Real-Time Rendering in Games, Part I (Full Text
Not Available). In ACM SIGGRAPH 2014 Courses. Article 10, 1 pages.

A. Tewari, O. Fried, J. Thies, V. Sitzmann, S. Lombardi, K. Sunkavalli, R. Martin-
Brualla, T. Simon, J. Saragih, M. Nießner, R. Pandey, S. Fanello, G. Wet-
zstein, J.-Y. Zhu, C. Theobalt, M. Agrawala, E. Shechtman, D. B Goldman,
and M. Zollhfer. 2020. State of the Art on Neural Rendering. Com-
puter Graphics Forum 39, 2 (2020), 701–727. https://doi.org/10.1111/cgf.14022
arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.14022

Justus Thies, Michael Zollhöfer, and Matthias Nießner. 2019a. Deferred Neural Render-
ing: Image Synthesis Using Neural Textures. ACM Trans. Graph. 38, 4, Article 66
(July 2019), 12 pages.

Justus Thies, Michael Zollhöfer, andMatthias Nießner. 2019b. Deferred neural rendering:
Image synthesis using neural textures. ACM Transactions on Graphics (TOG) 38, 4
(2019), 1–12.

Zhihao Wang, Jian Chen, and S. C. H. Hoi. 2020. Deep Learning for Image Super-
resolution: A Survey. IEEE Transactions on Pattern Analysis and Machine Intelligence
(2020), 1–1.

Zhihao Wang, Jian Chen, and Steven C. H. Hoi. 2020. Deep Learning for Image Super-
resolution: A Survey. arXiv:1902.06068 [cs.CV]

Thomas Whelan, Michael Goesele, Steven J Lovegrove, Julian Straub, Simon Green,
Richard Szeliski, Steven Butterfield, Shobhit Verma, Richard A Newcombe, M Goe-
sele, et al. 2018. Reconstructing scenes with mirror and glass surfaces. ACM Trans.
Graph. 37, 4 (2018), 102–1.

Daniel N Wood, Daniel I Azuma, Ken Aldinger, Brian Curless, Tom Duchamp, David H
Salesin, and Werner Stuetzle. 2000. Surface light fields for 3D photography. In
Proceedings of the 27th annual conference on Computer graphics and interactive
techniques. 287–296.

Lei Xiao, Salah Nouri, Matt Chapman, Alexander Fix, Douglas Lanman, and Anton
Kaplanyan. 2020. Neural supersampling for real-time rendering. ACM Transactions
on Graphics (TOG) 39, 4 (2020), 142–1.

Kai Xu, Lintao Zheng, Zihao Yan, Guohang Yan, Eugene Zhang, Matthias Niessner,
Oliver Deussen, Daniel Cohen-Or, and Hui Huang. 2017. Autonomous Reconstruc-
tion of Unknown Indoor Scenes Guided by Time-Varying Tensor Fields. ACM Trans.
Graph. 36, 6, Article 202 (Nov. 2017), 15 pages. https://doi.org/10.1145/3130800.
3130812

Zexiang Xu, Sai Bi, Kalyan Sunkavalli, Sunil Hadap, Hao Su, and Ravi Ramamoorthi.
2019. Deep view synthesis from sparse photometric images. ACM Transactions on
Graphics (TOG) 38, 4 (2019), 1–13.

Tianfan Xue,Michael Rubinstein, Ce Liu, andWilliamT Freeman. 2015. A computational
approach for obstruction-free photography. ACM Transactions on Graphics (TOG)
34, 4 (2015), 1–11.

Cha Zhang and Tsuhan Chen. 2004. A survey on image-based rendering —— represen-
tation, sampling and compression. Signal Processing: Image Communication 19, 1
(2004), 1 – 28.

Qian-Yi Zhou and Vladlen Koltun. 2014. Color map optimization for 3D reconstruction
with consumer depth cameras. ACM Transactions on Graphics (TOG) 33, 4 (2014),
1–10.

Tinghui Zhou, Richard Tucker, John Flynn, Graham Fyffe, and Noah Snavely. 2018.
Stereo magnification: Learning view synthesis using multiplane images. arXiv
preprint arXiv:1805.09817 (2018).

, Vol. 1, No. 1, Article . Publication date: January 2021.

