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Fig. 1. Medial IPC is a versatile reduced simulation framework that unifies nonlinear hyperelastic simulation and continuous self-/collision detection with
medial axis transform. It inherits the superior capability of shape approximation of medial mesh and the strong robustness of continuous collision resolve of
IPC. As a result, medial IPC produces high-quality deformable animations with rich and intensive collisions and contacts but at a significantly accelerated rate.
In the experiment shown in the figure, two barbarian ships falls on an array of thin rods. Each ship has nearly half million elements, and they frequently
interact with each other during the falling. There are many fine elastic paddles at both sides of the ship, multiple ladders, masts and canvases. Interpenetrations
among those small geometries can be easily generated if discrete collision detection is used (i.e., see the highlights in the figure). We also aggressively set the
time step size to 1/30. In this challenging simulation, Medial IPC robustly handles all the collision and contact events within a subspace of 16, 272 dimension
and yields compelling animation results. In this experiment, medial IPC is 110× faster than the fullspace IPC simulation.

We propose a framework of efficient nonlinear deformable simulation with
both fast continuous collision detection and robust collision resolution. We
name this new frameworkMedial IPC as it integrates the merits from medial
elastics, for an efficient and versatile reduced simulation, as well as incre-
mental potential contact, for a robust collision and contact resolution. We
leverage medial axis transform to construct a kinematic subspace. Instead of
resorting to projective dynamics, we use classic hyperelastics to embrace
real-world nonlinear materials. A novel reduced continuous collision detec-
tion algorithm is presented based on the medial mesh. Thanks to unique
geometric properties of medial axis and medial primitives, we derive closed-
form formulations for identifying between-primitive collision within the
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reduced medial space. In the meantime, the implicit barrier energy that gen-
erates necessary repulsion forces for collision resolution is also formulated
with the medial coordinate. In other words, Medial IPC exploits a universal
reduced coordinate for simulation, continuous self-/collision detection, and
IPC-based collision resolution. Continuous collision detection also allows
more aggressive time stepping. In addition, we carefully implement our
system with a heterogeneous CPU-GPU deployment such that massively
parallelizable computations are carried out on the GPU while few sequential
computations are on the CPU. Such implementation also frees us from gen-
erating training poses for selecting Cubature points and pre-computing their
weights. We have tested our method on complicated deformable models and
collision-rich simulation scenarios. Due to the reduced nature of our system,
the computation is faster than fullspace IPC or other fullspace methods
using continuous collision detection by at least one order. The simulation
remains high-quality as the medial subspace captures intriguing and local
deformations with sufficient realism.
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1 INTRODUCTION
Deformable simulation has been extensively studied in the graphics
community. While the underlying computation methods are well
established, the computational cost for simulating high-resolution
geometrically complex deformable objects remains prohibitive for
applications with a limited time budget. It is common to use coars-
ened or reduced simulation techniques to formulate elastic dynamics
with a generalized coordinate [Sifakis and Barbic 2012]. By doing
so, the core simulation becomes independent of the size of the input
model. During the simulation, it is also expected that deformable
objects do not overlap or interpenetrate with each other. This re-
quirement is enforced by a dedicated self-/collision detection routine
which returns all intersecting triangle pairs. Given this information,
we could resolve the collision by using complimentary constraints
or penalty forces [Baraff 1994; Moore and Wilhelms 1988].
In dynamic simulation, we discretize the temporal domain into

time steps for the ease of time differentiation. It is reasonable to
perform collision detection by the end of a time step and resolve
detected collisions in the next step. This strategy is known as the
discrete collision detection (DCD). While implementation-friendly,
DCD runs into several robustness and accuracy concerns in practice
especially under bigger time steps (e.g., 1/30 sec). For instance, a
fast-moving vertex could easily pass through small-scale geometries
in one step. DCD is inherently limited for such single-step penetra-
tions, not only producing annoying visual artifacts but also leading
to severe physical inaccuracy. In contrast, continuous collision de-
tection (CCD) [Brochu et al. 2012] offers a more robust solution.
Unlike DCD that queries collisions at a given time instance, CCD
scrutinizes potential overlaps of linearized triangle trajectories over
the entire time step, which in turn is more computationally involved.
Several research has demonstrated convincing advantages com-

bining reduced simulation and collision detection. For instance,
James and Pi [2004] exploited subspacemodes to construct a bounded
deformation tree (BD-tree) for fast collision culling. Barbič and
James [2010] accelerated self-collision culling by pre-computing sub-
space certificates, which demarcate a self-collision free area on the
model with reduced coordinates. Recently, Lan and colleagues [Lan
et al. 2020] leveraged medial axis transform (MAT) to accelerate
both projective dynamics (PD) simulation and culling. We note that
however, the benefits brought by model reduction mainly contribute
to DCD culling in existing methods. Sophisticated computations for
CCD are largely untouched and remain in the fullspace.
In this paper, we stick with the high-level concept of leveraging

complementary features from reduced simulation and collision de-
tection. Apart from previous contributions however, we focus on an
algorithmic integration of continuous collision detection and han-
dling. We note that CCD always synergizes with implicit collision
resolve algorithms. They two-way couple all the colliding objects
making the system solve much more expensive, no to mention extra
numerical safeguards needed for trimming oversized Newton step.
From this perspective, we believe model reduction ought to be more
effective and desired in CCD-involved simulation problems. Driven
by this idea, we propose a novel CCD-capable reduced simulation
framework. We name our system Medial IPC as it inherits favored
merits from two recent contributions of medial elastics [Lan et al.

2020] and incremental potential contact (IPC) [Li et al. 2020] in order
to reach a better trade-off between accuracy and performance. With
medial IPC, we substantially accelerate full IPC simulation, and
the resulting animation is highly plausible and realistic. While con-
ceptually straightforward, our system addresses several significant
technical challenges in model reduction and CCD:
• From the model reduction point of view, we build our reduced
kinematics with MAT, similar to medial elastics [Lan et al. 2020].
MAT is known as the topology skeleton, and it intrinsically cap-
tures nonlinear shape deformation of a 3D model. The deforma-
tion effects are rich and vivid with just few hundred handles. Our
system offers general hyperelastic simulation instead of using
PD. All collision and contact events are handled robustly in a full
implicit manner.
• Our framework is CCD friendly and efficient: all the CCD compu-
tations are directly based on the generalized degrees of freedom
(DOFs) at medial handles, thus independent of the surface res-
olutions. We give the detailed formulation for calculating the
first time contact of colliding medial primitives. This is a hexic
polynomial function and solved numerically. Thanks to model re-
duction, we are able to exhaustively run CCD tests efficiently on
GPU (i.e., in milliseconds) making collision culling unnecessary.
• We follow the paradigm of IPC [Li et al. 2020] to resolve collision
and contact instances. Fullspace IPC plugs a potential energy
when triangles move sufficiently close to each other and yields
an increasingly stronger repulsion force to keep them apart. In
our system, this energy is also natively defined in the reduced
space. Without fullspace-subspace conversion, its differentiation
directly gives generalized collision force to forward the simula-
tion. Finally, we adopt a hybrid CPU-GPU implementation that
fully harvests the power of hardware and pushes the simulation
performance to the limit.

In the experiments, we find that medial IPC runs consistently
faster than fullspace IPC by at least one order. With such substan-
tially accelerated simulation, the resulting animation retains a very
high quality. An example is reported in Fig. 1, where two barbarian
ships are falling, colliding, and interacting with the environment
actively during the simulation. Our MAT-based model reduction
forms a subspace of 16, 272 dimensions. All the computations for
CCD, IPC, and Neo-Hookean dynamics are carried out in the sub-
space. This makes the simulation over 110× faster than the fullspace
IPC simulation. While the scale of the simulation is condensed by
50×, medial IPC manages to capture a wide range of deformations
with little visible difference. The residual errors stay below 1% in
both cases with all collisions resolved at the time of the contact.

2 RELATED WORK
Deformable simulation solves a dynamic equilibrium among the
external force, inertia force, and the nonlinear internal force. For
large-scale models i.e., with hundred thousands of DOFs, the sim-
ulator needs to solve a high-dimension nonlinear system repet-
itively at each time step. Therefore, even there are many well-
established simulation frameworks such as finite element method
(FEM) [Zienkiewicz et al. 1977], finite difference method [Zhu et al.
2010], meshless method [Martin et al. 2010; Müller et al. 2005],
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mass-spring system [Liu et al. 2013] etc, efficient simulating high-
resolution models is still a challenging problem.

Speeding up a deformable simulation can be achieved using ded-
icated numerical treatments like the multigrid method [Tamstorf
et al. 2015; Zhu et al. 2010], an incremental matrix update [Hecht
et al. 2012], or parallelizable solvers [Fratarcangeli et al. 2016; Wang
and Yang 2016]. These methods focus on improving the performance
for the fullspace nonlinear optimization without condensing the
simulation scale. Acceleration can also be achieved using model re-
duction, which removes less important DOFs and creates a subspace
representation of fullspace DOFs. Proper Orthogonal Decomposition
(POD) [Barbič and Popović 2008], modal analysis [Choi and Ko 2005;
Hauser et al. 2003; Pentland and Williams 1989] and its first-order
derivatives [Barbič and James 2005; Yang et al. 2015] are often con-
sidered as highly effective approaches for the subspace construction.
Displacement vectors from recent fullspace simulations can also be
utilized as subspace bases [Kim and James 2009]. Alternatively, it is
also viable to coarsen geometric shape representation to prescribe
the dynamics of a fine model like skin rigging widely used in mod-
ern animation systems. Analogously, Capell and colleagues [2002]
deformed an elastic body using an embedded skeleton; Gilles and
colleagues [2011] used 6-DOF rigid frames to drive the deformable
simulation; Faure and colleagues [2011] used scattered handles to
model complex deformable models; Martin and colleagues [2010]
used sparsely-distributed integrators named elastons to model the
nonlinear dynamics of rod, shell, and solid uniformly.
Collision detection is another important task along the physics

animation pipeline. In theory, collisions could occur at any sur-
face triangle pairs, and an exhaustive triangle-based collision de-
tection is infeasible for high-resolution models. To this end, a com-
monly adopted method is to use some bounding volume hierarchy
(BVH) [Zachmann and Langetepe 2003] to avoid excessive triangle-
triangle intersection tests. This pre-screening procedure is also
known as collision culling. Different BV types have been explored
such as AABB [Bergen 1997], OBB [Gottschalk et al. 1996], bound-
ing sphere [Hubbard 1995; James and Pai 2004], Boxtree [Zachmann
2002], spherical shell [Krishnan et al. 1998] and so on. It is noted that
both model reduction and collision culling seek for good shape ap-
proximations. Following this intuition, James and Pi [2004] proposed
an algorithm that updates the BD-tree directly using the general-
ized coordinate. Barbič and James [2010] computed self-collision
certificates in subspace to accelerate self-collision culling. Following
the observation that a self-collision occurs under large local defor-
mation, Zheng and James [2012] proposed an energy-based metric
to improve the culling effectiveness. Recently, Lan and colleagues
designed a MAT-based reduced simulator called medial elastics [Lan
et al. 2020]. As the MAT fits the model geometry much tighter than
other BVs, collision culling becomes more effective.

Nevertheless, the integration of model reduction and CCD at algo-
rithmic level remains challenging. This is because after culling, the
actual triangle-triangle intersection tests still occur in the fullspace
using per-vertex positions [Ainsley et al. 2012; Harmon et al. 2008;
Otaduy et al. 2009]. In CCD, one also needs to calculate the first time
contact, which is not well-defined in a general-purpose subspace
(such as modal spaces). CCD should also be paired with implicit
collision resolve algorithms [Geilinger et al. 2020; Macklin et al.

2020, 2019]. Few methods offer guaranteed convergence and accu-
racy even in the fullspace. Naïve fullspace-subspace projection of
collision forces also induces accuracy loss and potentially under-
mines the effectiveness of the collision force calculated in fullspace.
Therefore, accelerating CCD-based nonlinear elasticity with high
robustness and accuracy is an unsolved problem.
Medial IPC is our attempt towards this challenge. Our method

is inspired by two recent contributions in model reduction and im-
plicit collision/contact resolve. Specifically, our reduced dynamics
follows a similar form in medial elastics [Lan et al. 2020], by pre-
scribing vertex kinematics based on deformation handles placed at
medial vertices of MAT [Blum 1967]. MAT essentially provides a
tight volume enclosure of the input model, which greatly facilitates
collision culling in medial elastics – a few hundred medial primitives
are able to tightly encapsulate complicated models. This pleasing
feature is better utilized in our framework, as we completely avoid
triangle-level computations for collision, self-collision, and contact.
This is achieved by designing the barrier function of the incremental
potential within the medial space. In other words, our framework
monitors the closest unsigned distance between each pair of medial
primitives, and an IPC penalty [Li et al. 2020] rises yielding collision
and friction forces needed whenever a barrier function is activated.
We enable most numerical treatments developed by fullspace IPC,
including such as positive-semi definite projection of the element
stiffness matrix and integrating per-iteration CCD in line search
despite moving all of them to a subspace formulation. We would
like to remind that such subspace re-formulation is not merely pro-
jecting their fullspace counterparts into the subspace, which could
bring accuracy loss. Instead, our subspace formulation is native. This
is not a trivial task. As medial primitives can be considered as an
interpolated sphere surface, computing the first time of contact for
MAT results in a complicated higher-order problem. We manage to
give its analytic formulation, and solve this equation numerically.

Implementation also imposes many challenges. Usually, general
model reductions aim to keep all simulation algorithms at the order
of the subspace size 𝑛 (e.g., 𝑛 denotes the total number of medial
handles in our framework). Therefore, they rely on Cubature sam-
pling [An et al. 2008] to avoid computation atO(𝑁 ), where𝑁 stands
for the size of the input model. In our framework, we fully leverage
GPU to speed up the reduced force and Hessian computation. A
tricky problem is, when we have a large-scale model (e.g., with
hundred thousands of vertices) and a big subspace (e.g., of several
thousand dimension), we may not have enough GPU memory stor-
ing the subspace matrix, whose space complexity isO(𝑁 ·𝑛). To this
end, we exploit unique algebraic structure of medial subspace so
that this operation could be processed with consumer-level GPUs.

3 REDUCED SIMULATION WITH MEDIAL ELASTICS
The fullspace deformable simulation is formulated as:M¥u = f𝑖𝑛𝑡 (u)+
f𝑒𝑥𝑡 implying the equilibrium among inertia force (M¥u), internal
force (f𝑖𝑛𝑡 ), and external force (f𝑒𝑥𝑡 ). While f𝑒𝑥𝑡 is often consid-
ered known, f𝑖𝑛𝑡 could be nonlinearly dependent on the unknown
displacement of the system (u). Model reduction assumes a linear
subspace is able to well express the fullspace displacement such as
u = Uq, where U ∈ R𝑁×𝑛 is a slim subspace matrix (i.e., 𝑛 << 𝑁 ).
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This assumption allows us to project the original fullspace equilib-
rium into the 𝑛-dimension column space of U:

M̃¥q = f̃𝑖𝑛𝑡 (q) + U⊤f𝑒𝑥𝑡 . (1)

M̃ = U⊤MU and f̃𝑖𝑛𝑡 are the reduced mass matrix and internal force.

Fig. 2. A medal primitive is ei-
ther medial cone (left) or a me-
dial slab (right).

For a given 3D shape, there exists a
unique medial axis transform or MAT
that losslessly encodes its surface ge-
ometry. The MAT consists of a set of
spheres. Each sphere is maximally in-
scribed with at least two closest points
on the boundary of the model [Blum
1967]. With MAT, one can easily per-
form the in/out test by comparing the
distance to the nearest medial point and the corresponding sphere
radius. MAT can be aggressively simplified to a medial mesh, a 2D
non-manifold mesh of triangles and edges [Sun et al. 2016]. The
radius information at medial vertices is interpolated along edges
and triangles forming the so-called medial primitives (or simply
primitive in this paper), which is either a cone or a slab (see Fig. 2).
Medial elastics prescribes kinematics in a skinning-like manner:

the deformation of the model is driven by the handles at each medial
vertex. A handle holds deformation DOFs i.e., a transformation sten-
cil, and the final deformation is computed by blending deformation
from all the handles. In medial IPC, we assign each handle an affine
transformation as did in [Faure et al. 2011]. Given the rest position
x𝑖 of the vertex 𝑖 , its displacement u𝑖 is written as:

u𝑖 = Uq = [𝑤1U(x𝑖 ), · · · ,𝑤𝑛U(x𝑖 )]

q1
.
.
.

q𝑛

 , (2)

where𝑤 𝑗 from the 𝑗-th handle is the biharmonic weight [Jacobson
et al. 2011]. We do not add high-order DOFs as in other spatial
reduction simulators [Bargteil and Cohen 2014; Luo et al. 2018;
Martin et al. 2010]. Consequently, the subspacematrix holds a simple
and relatively sparse pattern of:

U(x𝑖 ) =
[
I, I ⊗ x⊤𝑖

]
∈ R3×12 . (3)

If we split the generalized coordinate q into four three-vectors such
that q = [q⊤1 , q

⊤
2 , q
⊤
3 , q
⊤
4 ]
⊤, it can be easily verified that U(x𝑖 )q is es-

sentially equivalent to Ax𝑖 + q1 with A = [q2, q3, q4]. If quadratic or
other nonlinear DOFs [Gilles et al. 2011] are involved, the structure
of the subspace matrix becomes complicated and dense, which over-
stresses the GPU memory footprint and prohibits a Cubature-free
subspace integration (e.g., see § 6). As long as the sparsity of the
handles are moderate (e.g., a few hundred), we do not observe any
visual artifacts in our experiments even under large deformations.

Another difference between our work and medial elastics is the
solver choice. We do not use a PD-based solver [Bouaziz et al. 2014;
Brandt et al. 2018]. Instead, medial IPC sticks with classic Lagrangian
mechanics. In our implementation, we choose a variant of the Neo-
Hookean material model proposed in [Smith et al. 2018], which
possesses an altered positive semi-definite (PSD) Hessian and a
strong volume preserving penalty:

Ψ(F) = 𝜇

2 (𝐼𝐶 − 3) +
𝜆

2 (𝐽 − 𝛼)
2 − 𝜇

2 log(𝐼𝐶 + 1). (4)

Here, 𝐽 = |F|; 𝐼𝐶 = tr(F⊤F); F is the deformation gradient tensor;
and 𝛼 = 1+𝜇/𝜆−𝜇/(4𝜆) is a rest-stability shift. 𝜇 and 𝜆 are Lamé con-
stants of the material. More detailed derivation of this energy can be
found in related literature e.g., see [Smith et al. 2018] and [Kim and
Eberle 2020]. Implementing other material models are straightfor-
ward with our system and should not be claimed as a contribution.
Our reduced model maintains a subspace of a considerable dimen-
sion, which permits sharp and local deformations. Numerical treat-
ments like PSD projection and principle stress correction [Irving
et al. 2004; Xu et al. 2015] will be needed. Such numerical hazards
however, seldom occur when an aggressive reduction is applied for
instance, as in [Barbič and James 2005].
The internal force f𝑖𝑛𝑡 is resultant of elastic resistance, collision

and contact, and damping. It follows the negative gradients of those
energies and is linearized at each Newton step. The collision and
contact follow the IPCmodel [Li et al. 2020] but directly based on the
generalized coordinate q. As wewill see later, this strategy reinforces
the advantage of model reduction as the collision and contact forces
are natively in generalized formwithout the need for extra fullspace-
subspace projections, which are often the computation bottleneck
in model reduction.

4 MEDIAL DISTANCE & MEDIAL IPC ENERGY

Fig. 3. MAT with 127 primitives (left)
well approximates the geometry of the
dinosaur (right).

Our rationale, when aiming
an CCD-aware efficient sim-
ulation, is that the reduced
basis should hold an articu-
lated geometric information,
which could be fully exploited
in the CCD procedure. Hence
even modal analysis [Pentland
and Williams 1989] provides a
theoretically optimal subspace
(around the rest shape), it is not
adopted in our framework. After all, when collisions are inten-
sive, high-frequency deformations abound, and a low-frequency-
dominant subspace becomes potentially problematic. MAT-based
model reduction on the other hand, excels in this regard, which al-
lows us to formulate amedial continuous collision detection algorithm
without referring to fullspace per-vertex position or displacement
(see Fig. 3). It should be noted that the reduced representations
for model deformation and CCD are not consistent. That is the de-
formation of medial primitives does not perfectly align with the
vertices. Therefore, medial IPC essentially uses an approximated
CCD processing over high-resolution meshes. We also assume there
is no triangle self-collision within a primitive. As the total number
of primitives is limited, we can simply perform a brute-force CCD
for all primitive pairs without needing collision culling

4.1 Medial Distance
In medial IPC, we need to compute the closest distance between any
pair of medial primitives. If this distance is smaller than a pre-defined
barrier activation threshold 𝑑 > 0, the barrier function becomes non-
zero, resulting in collision and friction forces. In other words, the
collision force is generated before two objects physically touch with
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each other, and 𝑑 determines the smoothness of a collision event.
By default, 𝑑 is defined based on fullspace vertex positions [Li et al.
2020]. In medial IPC, it is alternatively defined with an altered dis-
tance metric between two medial primitives named medial distance.
Medial distance needs to be re-calculated every time after q is up-
dated. It is also noteworthy that collision culling is not practiced
in medial IPC. As all the computations are fully inside the medial
subspace, distance (and other related) calculations are light-weight
and easily parallelizable on GPU.
Without loss of the generality, we elaborate our formulation

for the cone-cone medial distance. Sphere-slab distance follows
a similar procedure (details are in the supplementary document).
They together allow us to compute slab-cone and slab-slab cases.
For instance, a slab-cone test consists of one sphere-slab test and
three cone-cone tests. Let 𝑐1,1 and 𝑐1,2 denote sphere centers at two
ends of C1, whose radii are 𝑟1,1 and 𝑟1,2. Likewise, 𝑐2,1, 𝑐2,2 and 𝑟2,1,
𝑟2,2 represent sphere centers and radii of C2. Any inscribing sphere
in C1 and C2 can then be interpolated as:

𝑐1 (𝛼) = 𝛼 (𝑐1,1 − 𝑐1,2) + 𝑐1,2, 𝑟1 (𝛼) = 𝛼 (𝑟1,1 − 𝑟1,2) + 𝑟1,2,
𝑐2 (𝛽) = 𝛽 (𝑐2,1 − 𝑐2,2) + 𝑐2,2, 𝑟2 (𝛽) = 𝛽 (𝑟2,1 − 𝑟2,2) + 𝑟2,2,

where 𝛼, 𝛽 ∈ [0, 1] are interpolation parameters in C1 and C2.
When C1 and C2 stay apart, their closest distance can be written

as a minimization problem:

min
𝛼,𝛽
∥𝑐1 (𝛼) − 𝑐2 (𝛽)∥ − (𝑟1 (𝛼) + 𝑟2 (𝛽)) . (5)

Eq. (5) computes the closest Euclidean distance between C1 and C2
by subtracting the distance between corresponding sphere centers
by their radii. We found that however, because of the square rooting
term in ∥𝑐1 (𝛼)−𝑐2 (𝛽)∥, formulating an IPC energy and its derivative
based on Eq. (5) becomes quite complicated. As this is used in our IPC
formulation as a barrier to prevent C1 and C2 from moving towards
each other, we construct medial distance by a slight modification of
Eq. (5) as:

min
𝛼,𝛽

𝑓 , 𝑓 = ∥𝑐1 (𝛼) − 𝑐2 (𝛽)∥2 − (𝑟1 (𝛼) + 𝑟2 (𝛽))2 . (6)

We note that the medial distance 𝑓 is zero if and only if C1 is in
contact with C2. It monotonously increases, as the Euclidean dis-
tance does, when C1 and C2 move away from each other (but at a
different rate). Those observations agree that an IPC energy based
on Eq. (6) will be as viable as the one forged with Eq. (5) in terms of
pushing the colliding cones away. Lastly, we would like to remind
that neither of Eqs. (5) or (6) works when C1 intersects with C2. C1
and C2 being separated by a non-negative distance is the prereq-
uisite of not only the IPC method but also of interior-point-based
numerical procedures [Den Hertog 2012].

Expanding the medial distance formulation in Eq. (6) with some
manipulations could better reveal the structure of this metric:

𝑓 (𝛼, 𝛽) = ∥𝛼𝐶1 + 𝛽𝐶2 +𝐶3∥2 − (𝛼𝑅1 + 𝛽𝑅2 + 𝑅3)2

= 𝐴𝛼2 + 𝐵𝛼𝛽 +𝐶𝛽2 + 𝐷𝛼 + 𝐸𝛽 + 𝐹, (7)

where coefficients of this quadratic equation are defined as:

𝐶1 = 𝑐1,1 − 𝑐1,2, 𝐶2 = −𝑐2,1 − 𝑐2,2, 𝐶3 = 𝑐1,2 − 𝑐2,2,
𝑅1 = 𝑟1,1 − 𝑟1,2, 𝑅2 = 𝑟2,1 − 𝑟2,2, 𝑅3 = 𝑟1,2 + 𝑟2,2,

(8)

and
𝐴 = 𝐶⊤1 𝐶1 − 𝑅21, 𝐵 = 2(𝐶⊤1 𝐶2 − 𝑅1𝑅2), 𝐶 = 𝐶⊤2 𝐶2 − 𝑅22,
𝐷 = 2(𝐶⊤1 𝐶3 − 𝑅1𝑅3), 𝐸 = 2(𝐶⊤2 𝐶3 − 𝑅2𝑅3), 𝐹 = 𝐶⊤3 𝐶3 − 𝑅23 .

(9)
In order to determine should a medial IPC energy be plugged for
C1 and C2, we need to solve for interpolation parameters 𝛼 and 𝛽

in Eq. (7). The minimizer can be calculated by setting the partial
derivatives of 𝜕𝑓 /𝜕𝛼 = 0 and 𝜕𝑓 /𝜕𝛽 = 0 as:

𝛼∗ =
𝐵𝐸 − 2𝐶𝐷
4𝐴𝐶 − 𝐵2

, 𝛽∗ =
𝐵𝐷 − 2𝐴𝐸
4𝐴𝐶 − 𝐵2

. (10)

If 𝑓 ∗ = 𝑓 (𝛼∗, 𝛽∗) ≤ 𝑑 , the barrier function activates, and a collision
or contact force appears in f̃𝑖𝑛𝑡 (Eq. (1)). In this case, we need to
further calculate the gradient and Hessian of the medial IPC energy.
It may be immediately noticed that Eq. (10) is not numerically

stable and could lead to the division-by-zero issue in practice. In
addition, Eq. (10) gives unconstrained optimal values of 𝛼 and 𝛽 as
the resulting minimizer 𝛼∗ and 𝛽∗ may fall outside of the designated
interval of [0, 1]. In the following subsection, we expatiate how to
compute corresponding IPC gradient and Hessian to avoid those
abnormalities.

4.2 Gradient and Hessian of Medial IPC
In medial IPC, we use the same the barrier equation as in the original
IPC [Li et al. 2020] except with the medial distance (Eq. (6)):

𝑏 (𝑓 , 𝑑) =

−(𝑓 − 𝑑)2 ln

(
𝑓

𝑑

)
, 0 < 𝑓 ≤ 𝑑

0 , 𝑓 > 𝑑

. (11)

Its gradient and Hessian can be captured by applying the chain rule
as:

𝜕𝑏

𝜕q
=

𝜕𝑏

𝜕𝑓

𝜕𝑓

𝜕q
,

𝜕2𝑏

𝜕q2
=

(
𝜕𝑓

𝜕q

)⊤
𝜕2𝑏

𝜕𝑓 2
𝜕𝑓

𝜕q
+ 𝜕𝑏

𝜕𝑓

𝜕2 𝑓

𝜕q2
. (12)

As an elementary function, 𝜕𝑏/𝜕𝑓 and 𝜕2𝑏/𝜕𝑓 2 are trivial to obtain.
The first- and second-order partial derivatives of the medial distance
on the other hand, undergo another chain rule:

𝜕𝑓

𝜕q

����
𝑓 =𝑓 (𝛼∗,𝛽∗)

=
∑︁ 𝜕𝑓

𝜕𝑋

𝜕𝑋

𝜕q
,

𝜕2 𝑓

𝜕q2

����
𝑓 =𝑓 (𝛼∗,𝛽∗)

=
∑︁ 𝜕2 𝑓

𝜕𝑋 2

(
𝜕𝑋

𝜕q

)⊤
𝜕𝑋

𝜕q
+
∑︁ 𝜕𝑓

𝜕𝑋

𝜕2𝑋

𝜕q2
,

(13)

where 𝑋 stands for coefficients 𝐴 to 𝐹 in Eq. (9). Their derivatives
with respect to q are given in Appendix A. It may appear confusing
as Eq. (13) does not contain any partial derivatives of 𝛼 and 𝛽 . This is
because 𝜕𝑓 /𝜕q and 𝜕2 𝑓 /𝜕q2 are evaluated at 𝑓 = 𝑓 ∗, where 𝜕𝑓 /𝜕𝛼 ,
𝜕2 𝑓 /𝜕𝛼2 and 𝜕𝑓 /𝜕𝛽 , 𝜕2 𝑓 /𝜕𝛼2 all have vanished values if 𝛼 and 𝛽

are the global minimizer of 𝑓 . There are however some corner cases
need to be taken care of.

■ Case 1: 4𝐴𝐶 − 𝐵2 = 0.
As shown in Fig. 4, 4𝐴𝐶 −𝐵2 = 0 indicates edges of C1 and C2 are in
parallel, and the radii of medial spheres at each cone are invariant.
In Case 1, it is possible that solutions of 𝛼∗ and 𝛽∗ are not unique,
and Eq. (10) is no longer applicable. To compute medial distance,
we first examine the smallest value among 𝑓 (0, 0), 𝑓 (0, 1), 𝑓 (1, 0),
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1

2

1,1 1,2r r=

2,1 2,2r r=

1

2

1,1 1,2r r=

2,1 2,2r r=

* 0α =

* 1β =
* 1β =

* 0β =

* 0α = * 1α = * 1α =

* 0β =

Fig. 4. Case 1: two parallel cones with fixed radii make 4𝐴𝐶−𝐵2 = 0. When
two edge spans have an overlap, 𝛼∗ and 𝛽∗ are not unique (left). Otherwise,
𝛼∗ and 𝛽∗ should be either 0 or 1 (right).

and 𝑓 (1, 1), which correspond to four arrows in Fig. 4 (right). For
the closest sphere pair, we calculate the medial distance at one of its
sphere center. For the example of Fig. 4, we can solve for 𝛽∗ using
Eq. (7) by setting 𝛼∗ = 0. Alternatively, we can also solve for 𝛼∗
while fixing 𝛽∗ = 1. They correspond to calculating one of the two
green arrows in Fig. 4 left. However, this computation only needs
to be performed once, either 𝛼∗ = 0 or 𝛽∗ = 1.
Assume we let 𝛼∗ = 0. If 𝛽∗ ∈ [0, 1], 𝑓 (0, 𝛽∗) is the medial

distance between C1 and C2, and the computation of the distance
gradient/Hessian follows the procedure described in Case 2 or
Case 3. Otherwise, the medial distance should be computed based
on the closest sphere centers at cone ends. If so, the reduced gradient
and Hessian are:

𝜕𝑓

𝜕q
= 𝛼2

𝜕𝐴

𝜕q
+ 𝛼𝛽 𝜕𝐵

𝜕q
+ 𝛽2 𝜕𝐶

𝜕q
+ 𝛼 𝜕𝐷

𝜕q
+ 𝛽 𝜕𝐸

𝜕q
+ 𝜕𝐹

𝜕q
,

𝜕2 𝑓

𝜕q2
= 𝛼2

𝜕2𝐴

𝜕q2
+ 𝛼𝛽 𝜕

2𝐵

𝜕q2
+ 𝛽2 𝜕

2𝐶

𝜕q2
+ 𝛼 𝜕2𝐷

𝜕q2
+ 𝛽 𝜕

2𝐸

𝜕q2
+ 𝜕2𝐹

𝜕q2
,

(14)

with 𝛼 and 𝛽 being either 0 or 1.
The computation steps outlined in Case 1 save us three solves of

Eq. (7), if we start with checking sphere-cone distances and move to
sphere-sphere distance afterwards (i.e., from left to right in Fig. 4).

1

2

* 0α =
* 1α =

1,1r
1,2r

*0 1β< <2,1r 2,2r

1

2

1,1r
1,2r

*0 1β< <2,1r 2,2r

Fig. 5. Case 2 (left) and Case 3 (right): the global minimizer of 𝛼∗ is out of
the cone, which needs to be clamped, and the minimizer of 𝛽∗ should be
re-evaluated accordingly.

■ Case 2: 𝛼∗ < 0, and 𝛽∗ ∈ [0, 1].
If Eq. (10) gives 𝛼∗ < 0 and 𝛽∗ ∈ [0, 1], we have a beyond-interval
minimizer (Fig. 5 left). Therefore, we need to clamp 𝛼∗ = 0, which
leads to 𝑓 = 𝐶𝛽2 + 𝐸𝛽 + 𝐹 . Setting 𝜕𝑓 /𝜕𝛽 = 0 gives 𝛽∗ = −𝐸/2𝐶 .
The medial distance is then computed as: 𝑓 ∗ = 𝑓 (0,−𝐸/2𝐶) =

𝐹 − 𝐸2/4𝐶 . In this case, only 𝐶 , 𝐸, and 𝐹 are involved in 𝑓 ∗, and the

corresponding partial derivatives are:

𝜕𝑓

𝜕𝐶
=

𝐸2

4𝐶2 ,
𝜕𝑓

𝜕𝐸
= − 𝐸

2𝐶 ,
𝜕𝑓

𝜕𝐹
= 1,

𝜕2 𝑓

𝜕𝐶2 = − 𝐸2

2𝐶3 ,
𝜕2 𝑓

𝜕𝐸2
= − 1

2𝐶 ,
𝜕2 𝑓

𝜕𝐹 2
= 0.

(15)

The gradient and Hessian of the medial displacement can then be
obtained by substituting Eq. (15) into Eq. (13).

■ Case 3: 𝛼∗ > 1, and 𝛽∗ ∈ [0, 1].
As shown in Fig. 5 right, Case 3 is similar to Case 2, except that
the clamped sphere is at the other end of C1. Clamping 𝛼∗ to 1, 𝛽∗
becomes −(𝐵 + 𝐸)/2𝐶 , and the medial distance is 𝑓 ∗ = 𝑓 (1,−(𝐵 +
𝐸)/2𝐶) = 𝐴 +𝐷 + 𝐹 − (𝐵 + 𝐸)2/4𝐶 . 𝑓 ∗ is linear to 𝐴, 𝐷 , and 𝐹 . Thus,
we only need to compute partial derivatives of 𝐵, 𝐶 , and 𝐸 as:

𝜕𝑓

𝜕𝐵
= −𝐵 + 𝐸2𝐶 ,

𝜕𝑓

𝜕𝐶
=
(𝐵 + 𝐸)2
4𝐶2 ,

𝜕𝑓

𝜕𝐸
= −𝐵 + 𝐸2𝐶 ,

𝜕2 𝑓

𝜕𝐵2
= − 1

2𝐶 ,
𝜕2 𝑓

𝜕𝐶2 = − (𝐵 + 𝐸)
2

2𝐶3 ,
𝜕2 𝑓

𝜕𝐸2
= − 1

2𝐶 .

(16)

■ Case 4 & Case 5: 𝛽∗ < 0 or 𝛽∗ > 1, and 𝛼∗ ∈ [0, 1].
Case 4 and Case 5 mirror Case 2 and Case 3. They can be handled
in the same way as Eqs. (15) and (16), by flipping C1 and C2.

2
*0 1β< <2,1r 2,2r

1,1r
1,2r1

*0 1α< <

Fig. 6. Case 6: the medial
distance is at intermediate
spheres in both cones.

■ Case 6: 𝛼∗, 𝛽∗ ∈ [0, 1].
This case represents the most general
situation as illustrated in Fig. 6. In
Case 6, both 𝛼∗ and 𝛽∗ computed with
Eq. (10) reside in the valid interpolation
interval of [0, 1]. Therefore, the medial
distance formulation can be obtained
by substituting Eq. (10) into Eq. (7):

𝑓 ∗ = 𝑓

(
𝐵𝐸 − 2𝐶𝐷
4𝐴𝐶 − 𝐵2

,
𝐵𝐷 − 2𝐴𝐶
4𝐴𝐶 − 𝐵2

)
=
𝐴𝐵2𝐸2 − 4𝐴𝐶2𝐷2 + 𝐵2𝐶𝐷2 − 4𝐴2𝐶𝐸2 − 𝐵3𝐷𝐸 + 4𝐴𝐵𝐶𝐷𝐸

(4𝐴𝐶 − 𝐵2)2
+𝐹,

which can be simplified to:

𝑓 ∗ = 𝐹 + 𝐵𝐷𝐸 − (𝐴𝐸2 +𝐶𝐷2)
4𝐴𝐶 − 𝐵2

. (17)

Its first-order partial derivatives of 𝑓 ∗ with respect to all 𝐴 to 𝐹

coefficients can be computed conveniently as:

𝜕𝑓

𝜕𝐴
= 𝛼∗2,

𝜕𝑓

𝜕𝐵
= 𝛼∗𝛽∗,

𝜕𝑓

𝜕𝐶
= 𝛽∗2,

𝜕𝑓

𝜕𝐷
= 𝛼∗,

𝜕𝑓

𝜕𝐸
= 𝛽∗,

𝜕𝑓

𝜕𝐹
= 1.

(18)

The second- and mixed-derivatives are bit involved. Here, we give
the formula for coefficient 𝐴 and move the rest equations for other
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coefficients to Appendix B:

𝜕2 𝑓

𝜕𝐴2 = −2𝐵𝐸 − 2𝐶𝐷
4𝐴𝐶 − 𝐵2

4𝐶 (𝐵𝐸 − 2𝐶𝐷)
(4𝐴𝐶 − 𝐵2)2

,

𝜕2 𝑓
𝜕𝐴𝜕𝐵

= 2𝐵𝐸 − 2𝐶𝐷
4𝐴𝐶 − 𝐵2

(
𝐸

4𝐴𝐶 − 𝐵2
+ 2𝐵(𝐵𝐸 − 2𝐶𝐷)
(4𝐴𝐶 − 𝐵2)2

)
,

𝜕2 𝑓
𝜕𝐴𝜕𝐶

= −2𝐵𝐸 − 2𝐶𝐷
4𝐴𝐶 − 𝐵2

(
2𝐷

4𝐴𝐶 − 𝐵2
+ 4𝐴
(4𝐴𝐶 − 𝐵2)2

)
,

𝜕2 𝑓
𝜕𝐴𝜕𝐷

= −2𝐵𝐸 − 2𝐶𝐷
4𝐴𝐶 − 𝐵2

− 2𝐶
4𝐴𝐶 − 𝐵2

,

𝜕2 𝑓
𝜕𝐴𝜕𝐸

= 2𝐵𝐸 − 2𝐶𝐷
4𝐴𝐶 − 𝐵2

𝐵

4𝐴𝐶 − 𝐵2
.

(19)

Evaluating the medial distance and its derivatives for cone-slab and
slab-slab cases can be reduced to computing the medial distance for
sphere-sphere (Case 1), sphere-cone (Case 2 – Case 5), cone-cone
(Case 6), and sphere-slab cases. When computing the sphere-slab
distance, we will have one extra interpolation parameter 𝛾 ∈ [0, 1],
corresponding to the other edge in the slab. Setting 𝛼 = 0 or 𝛼 = 1
gives us all derivatives needed, just as in Eqs. (15) and (16).

After activating necessary IPC energies and computing their gra-
dient and Hessian for each pair of medial primitives, the simulation
advances, and the solver nominates an incremental displacement
of Δq at each iteration. This Δq, if applied blindly, could induce
inter-penetrations and fail the simulation. CCD is then invoked to
avoid such risk.

5 MEDIAL CCD
In our framework, CCD is checked every time the displacement
of primitives is to be updated e.g., after a Newton iteration, with
a tentative Δq. The primary goal of CCD is to ensure that motion
trajectories of two deformable objects do not overlap, even they
may appear disjointed at the end of the time step. CCD computes
the first contact time a.k.a. the time of impact (TOI) between them
to trim Δq so that IPC can be applied in the next iteration timely.

We keep our discussion with the example of C1 and C2 and add a
time parameter 𝑡 ∈ [0, 1] to linearize their trajectories over Δq. The
sphere centers 𝑐𝑖, 𝑗 (𝑡) (i.e., for 𝑖, 𝑗 = {1, 2}) now depend on 𝑡 as well.
Yet, they are still interpolating all intermediate spheres in C1 and
C2. Hence, trajectories of 𝑐𝑖, 𝑗 can be concisely written as:

𝑐𝑖, 𝑗 (𝑡) = 𝑐𝑖, 𝑗 + 𝑣𝑖, 𝑗 𝑡 . (20)

Here, 𝑐𝑖, 𝑗 = 𝑐𝑖, 𝑗 (0) is the position of the sphere center at 𝑡 = 0
i.e., before Δq is applied, and 𝑣𝑖, 𝑗 is the (constant) velocity during
the normalized time interval. As the trajectory is the focus, the
expression of the medial distance between C1 and C2 should also
be modified as:

min
𝛼,𝛽,𝑡

𝑓 (𝑡), 𝑓 (𝑡) = ∥𝑐1 (𝛼, 𝑡) − 𝑐2 (𝛽, 𝑡)∥2 − (𝑟1 (𝛼) + 𝑟2 (𝛽))2 . (21)

We re-organize Eq. (21) similarly as we did in Eq. (7) as:

𝑓 (𝛼, 𝛽, 𝑡) = 𝐴(𝑡)𝛼2 +𝐵(𝑡)𝛼𝛽 +𝐶 (𝑡)𝛽2 +𝐷 (𝑡)𝛼 +𝐸 (𝑡)𝛽 + 𝐹 (𝑡) . (22)

All the coefficients are now functions of 𝑡 with 𝑣𝑖, 𝑗 involved:

𝑉1 = 𝑣1,1 − 𝑣1,2, 𝑉2 = 𝑣2,1 − 𝑣2,2, 𝑉3 = 𝑣1,2 − 𝑣2,2,
𝐶1 (𝑡) = 𝐶1 +𝑉1𝑡, 𝐶2 (𝑡) = 𝐶2 +𝑉2𝑡, 𝐶3 (𝑡) = 𝐶3 +𝑉3𝑡,
𝐴(𝑡) = 𝑉⊤1 𝑉1𝑡2 + 2𝑉⊤1 𝐶1𝑡 + (𝐶⊤1 𝐶1 − 𝑅21),
𝐵(𝑡) = 2(𝑉⊤1 𝑉2𝑡2 + (𝑉⊤1 𝐶2 +𝑉⊤2 𝐶1)𝑡 + (𝐶⊤1 𝐶2 − 𝑅1𝑅2)),
𝐶 (𝑡) = 𝑉⊤2 𝑉2𝑡2 + 2𝑉⊤2 𝐶2𝑡 + (𝐶⊤2 𝐶2 − 𝑅22),
𝐷 (𝑡) = 2(𝑉⊤1 𝑉3𝑡2 + (𝑉⊤1 𝐶3 +𝑉⊤3 𝐶1)𝑡 + (𝐶⊤1 𝐶3 − 𝑅1𝑅3)),
𝐸 (𝑡) = 2(𝑉⊤2 𝑉3𝑡2 + (𝑉⊤2 𝐶3 +𝑉⊤3 𝐶2)𝑡 + (𝐶⊤2 𝐶3 − 𝑅2𝑅3)),
𝐹 (𝑡) = 𝑉⊤3 𝑉3𝑡2 + 2𝑉⊤3 𝐶3𝑡 + (𝐶⊤3 𝐶3 − 𝑅23) .

(23)

Medial IPC employs a reduced CCD formulation checking the TOI
betweenmedial primitives based on the trajectory of medial distance
defined above. Because medial distance reaches zero only if two
primitives are in contact, TOI computed using medial distance is the
same as the one computed using the standard Euclidean distance (i.e.,
Eq. (5)). TOI search for primitives is a root-finding problem of high-
order polynomials, which is more expensive than triangle-based
CCD processing. Fortunately, because reduced modeling enables the
total number of CCD instances to be aggressively lowered, medial
CCD can still remain more efficient than traditional CCD especially
on GPU. For instance, in the example reported in Fig. 1, fullspace
CCD needs over 700 ms with the help of spatial hashing, while
medial CCD takes less than 10 ms on GPU.

5.1 Sphere-cone CCD
Sphere-cone CCD, as the name implies, checks the potential overlap
between one medial sphere at the end of C1 and C2, or vice versa. To
this end, we set 𝛼 or 𝛽 either 0 or 1. Mathematically, TOI in sphere-
cone CCD corresponds to finding the smallest root 𝑡∗, 0 < 𝑡∗ ≤ 1 of
four possible collision equations namely, 𝑓 (0, 𝛽, 𝑡) = 0, 𝑓 (1, 𝛽, 𝑡) = 0,
𝑓 (𝛼, 0, 𝑡) = 0, and 𝑓 (𝛼, 1, 𝑡) = 0.
Here, we detail the computation procedure for 𝑓 (0, 𝛽, 𝑡) = 0.

Other equations can be dealt with similarly. To solve 𝑓 (0, 𝛽, 𝑡) = 0,
we first substitute 𝛼 = 0 into Eq. (22) to have: 𝑓 (0, 𝛽, 𝑡) = 𝐶 (𝑡)𝛽2 +
𝐸 (𝑡)𝛽 + 𝐹 (𝑡) = 0. A meaningful root 𝑡∗ ∈ (0, 1] exists only when
the following four conditions are satisfied simultaneously:

𝐸2 (𝑡) − 4𝐶 (𝑡)𝐹 (𝑡) ≥ 0,
−𝐸 (𝑡) ±

√︁
𝐸2 (𝑡) − 4𝐶 (𝑡)𝐹 (𝑡) ≥ 0,

−𝐸 (𝑡) ±
√︁
𝐸2 (𝑡) − 4𝐶 (𝑡)𝐹 (𝑡) ≤ 2𝐶 (𝑡),

0 < 𝑡 ≤ 1.

(24)

Here, 𝐸2 (𝑡)−4𝐶 (𝑡)𝐹 (𝑡) ≥ 0 ensures 𝑓 (0, 𝛽, 𝑡) = 0 has real roots for 𝛽 ,
which should also be within its interpolation interval of [0, 1]. This
requirement is enforced by −𝐸 (𝑡) ±

√︁
𝐸2 (𝑡) − 4𝐶 (𝑡)𝐹 (𝑡) ≥ 0 and

−𝐸 (𝑡)±
√︁
𝐸2 (𝑡) − 4𝐶 (𝑡)𝐹 (𝑡) ≤ 2𝐶 (𝑡). Those inequations are all quar-

tic. In our implementation, we use Ferrari’s method [Herbison-Evans
1995] to retrieve all the real roots of the corresponding equations i.e.,
−𝐸 (𝑡) ±

√︁
𝐸2 (𝑡) − 4𝐶 (𝑡)𝐹 (𝑡) = 0 and −𝐸 (𝑡) ±

√︁
𝐸2 (𝑡) − 4𝐶 (𝑡)𝐹 (𝑡) =

2𝐶 (𝑡). Those roots split (0, 1] into multiple sub-intervals. 𝑓 (0, 𝛽, 𝑡)
is either positive or negative in each sub-interval, and all the sub-
intervals satisfying the inequation are collected. After that, a set
intersection operation is performed over sub-intervals of all inequa-
tions in Eq. (24), which gives the final interval of [𝑡𝑚𝑖𝑛, 𝑡𝑚𝑎𝑥 ], if not
empty. Clearly, 0 < 𝑡𝑚𝑖𝑛 ≤ 𝑡𝑚𝑎𝑥 ≤ 1. The TOI is then obtained as
𝑡∗ = 𝑡𝑚𝑖𝑛 .
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It is possible that 𝐶 (𝑡) = 0 suggesting that 𝑓 (0, 𝛽, 𝑡) = 𝐸 (𝑡)𝛽 +
𝐹 (𝑡) = 0 is no longer a quadratic equation with respect to 𝛽 . Geo-
metrically, this occurs when the sphere at one end of the cone is
fully inside the sphere at the other end. In this case, we only need to
check if 𝑡∗ is between 0 and 1with 𝛽 = 0 or 𝛽 = 1. In other words, the
sphere-cone medial distance between C1 and C2 further degenerates
to sphere-sphere distance, which can be trivially solved. However,
such situation rarely happens in practice (we never observe a single
instance in our experiments).

5.2 Cone-cone CCD
The cone-cone CCD is carried out afterwards, which mimics the
traditional edge-edge CCD processing on a triangle mesh, but with
an escalated problem order. When two edges of C1 and C2 are not in
parallel i.e., 4𝐴(𝑡)𝐶 (𝑡)−𝐵(𝑡)2 ≠ 0, we know the distance minimizers
are

𝛼∗ (𝑡) = 𝐵(𝑡)𝐸 (𝑡) − 2𝐶 (𝑡)𝐷 (𝑡)
4𝐴(𝑡)𝐶 (𝑡) − 𝐵(𝑡)2

, and 𝛽∗ (𝑡) = 𝐵(𝑡)𝐷 (𝑡) − 2𝐴(𝑡)𝐸 (𝑡)
4𝐴(𝑡)𝐶 (𝑡) − 𝐵(𝑡)2

.

This is just reiterating Eq. (10), except that 𝛼∗ (𝑡) and 𝛽∗ (𝑡) now
represent moving trajectories over 𝑡 ∈ [0, 1]. The collision condition
then becomes 𝑓 (𝛼∗ (𝑡), 𝛽∗ (𝑡), 𝑡) = 0, which is a hexic equation.

Similar to the sphere-cone CCD, we list two sets of constraints to
keep 𝛼∗ and 𝛽∗ inside (0, 1):

4𝐴(𝑡)𝐶 (𝑡) − 𝐵2 (𝑡) > 0,
𝐵(𝑡)𝐸 (𝑡) − 2𝐶 (𝑡)𝐷 (𝑡) > 0,
𝐵(𝑡)𝐷 (𝑡) − 2𝐴(𝑡)𝐸 (𝑡) > 0,
𝐵(𝑡)𝐸 (𝑡) − 2𝐶 (𝑡)𝐷 (𝑡) < 4𝐴(𝑡)𝐶 (𝑡) − 𝐵2 (𝑡),
𝐵(𝑡)𝐷 (𝑡) − 2𝐴(𝑡)𝐸 (𝑡) < 4𝐴(𝑡)𝐶 (𝑡) − 𝐵2 (𝑡),
0 < 𝑡 ≤ 1,

(25)

and 

4𝐴(𝑡)𝐶 (𝑡) − 𝐵2 (𝑡) < 0,
𝐵(𝑡)𝐸 (𝑡) − 2𝐶 (𝑡)𝐷 (𝑡) < 0,
𝐵(𝑡)𝐷 (𝑡) − 2𝐴(𝑡)𝐸 (𝑡) < 0,
𝐵(𝑡)𝐸 (𝑡) − 2𝐶 (𝑡)𝐷 (𝑡) > 4𝐴(𝑡)𝐶 (𝑡) − 𝐵2 (𝑡),
𝐵(𝑡)𝐷 (𝑡) − 2𝐴(𝑡)𝐸 (𝑡) > 4𝐴(𝑡)𝐶 (𝑡) − 𝐵2 (𝑡),
0 < 𝑡 ≤ 1.

(26)

The intersection of those inequations yields another interval of
(𝑡𝑚𝑖𝑛, 𝑡𝑚𝑎𝑥 ). If 𝑓 (𝑡𝑚𝑖𝑛) ≤ 0, we know a collision with an out-
interval 𝛼 or 𝛽 occurs between (0, 𝑡𝑚𝑖𝑛], which should already be
handled in the sphere-cone CCD processing. Otherwise, we seek
for the smallest root of 𝑓 (𝑡∗) = 0 for 𝑡∗ ∈ (𝑡𝑚𝑖𝑛, 𝑡𝑚𝑎𝑥 ). Unfor-
tunately, there does not exist a closed-form formula for solving
general hexic equations, and we resort to numerical methods to find
𝑡∗. There are many numerical root-finding algorithms such as bisec-
tion method [Ehiwario and Aghamie 2014] or ITP method [Argyros
et al. 2019; Oliveira and Takahashi 2020]. As we want to find 𝑡∗ just
right to 𝑡𝑚𝑖𝑛 , we use Householder’s method with the initial guess of
𝑡𝑚𝑖𝑛 . Typically, it converges within ten iterations if 𝑡∗ does exist. To
validate the robustness of this numerical solve, we synthesized cor-
ner cases for collision between medial primitives similar to [Erleben
2018]. Those 18 tests are reported in Fig. 7
We would like to point out that the root-finding computation is

not necessary for the sphere-cone CCD. In the sphere-cone case,
for any 𝑡 ∈ [𝑡𝑚𝑖𝑛, 𝑡𝑚𝑎𝑠 ], we can always find a minimizer of 𝛼∗ or

Fig. 7. Our CCD algorithm robustly returns the correct TOI in corner cases.

𝛽∗ that makes 𝑓 (𝑡∗) = 0, as long as constraints listed in Eq. (24) are
satisfied. The global 𝑡∗ is set as the smallest TOI for all primitive
pairs. If 𝑡∗ ≠ 1, the step size of Δq is conservatively adjusted to
Δq ← 0.8𝑡∗Δq. Doing so guarantees the updated q remains in a
collision-free state i.e., slightly before the global TOI. Basically, this
parameter presents a trade-off between the convergence speed of
current iteration and the nonlinearity of the next step. Specifically, if
we set the step size very close to 1.0, two primitives will move very
close to each other at the next iteration. The resulting barrier energy
will also be very large yielding a large-scale repulsion force and a
highly stiff system. If this parameter is set over-conservative like
0.1, Δq does not provide sufficient change to the system. Therefore,
the total number of iterations increases. After Δq is committed,
the medial distance needs to be updated, and IPC activations vary
accordingly.

6 CUBATURE-FREE SUBSPACE INTEGRATION
As explained in § 4, the gradient and Hessian of reduced IPC energy
can be directly expressed with the generalized coordinate. The re-
duced nonlinear elastic force and force gradient however, do not
enjoy such convenience. This has been a major technical hurdle for
reduced Lagrangian elastic simulation. A practical solution to re-
store the subspace efficiency is the so-called Cubature sampling [An
et al. 2008]. Cubature-sampled reduced force is, however sensitive
to training poses, and it casts uncertainties over the system con-
vergence when we have many high-frequency collision-triggered
deformations. For complicated models with sharp and concave local
geometries, it is impractical to synthesize all the poses that will
be seen in the simulation. We have little control over the error
induced by such sparse force samples, and setting an appropriate
convergence threshold becomes problematic, if not impossible.

Fortunately, we find that Cubature can be avoided in medial IPC.
This is because the dimensionality of our subspace (in thousands)
out scales other hyper-reduced models (i.e., only few dozens as
in [An et al. 2008; Barbič and James 2005]). In this situation, the
matrix solve with CCD-based line search stands as the dominant
computation. In general, the reduced force and Hessian (K̃) are
calculated via:

f̃𝑖𝑛𝑡 = U⊤f𝑖𝑛𝑡 , K̃ = U⊤
(
𝜕f𝑖𝑛𝑡
𝜕u

)
U. (27)

They are standard matrix-vector and matrix-matrix products and
could be significantly accelerated with cuBLAS [Nvidia 2008].
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Fig. 8. An overview of our medial IPC implementation. We use CPU for
sequential computations while use GPU for parallelable computations.

The real challenge is the consumption of GPU memory. Medial
IPC runs with double-precision floating point arithmetics in order to
accurately capture local collision events. Under such a configuration,
the size of the subspace matrix could be substantial. For instance,
a deformable object with 300K vertices and 𝑛 = 1, 000 will need
almost 7G GPU memory for storing U matrix alone.
If we take a second look over the structure of medial subspace

matrix U defined in Eq. (3), it should be immediately noticed that
saving U𝑖 in its native form is wasteful as the true information
needed for this 3×12matrix is only the rest position of the vertex (x𝑖 )
and weight distributions from nearby handles. In other words, only
the weight information is needed for U as the rest shape position of
the model is already there (i.e., for rendering etc). The total memory
footprint is then reduced by an order, from 13 double variables per
handle (12 for the affine transformation and 1 for weight) to only
one double variable.
As a pleasing by-product, such a compact U storage also brings

a noticable performance boost for subspace integration. We note
that the resulting reduced force at each vertex can be efficiently
evaluated following the affine transformation form instead of using
matrix-vector multiplication. In the experiment reported in Fig. 1,
doing so brings over 60% speedups with CUDA over a “brute-force”
matrix-vector or matrix-matrix based cuBLAS implementation. As
a result, medial subspace integration only takes 20% or less of the
matrix solve time, unnecessitating Cubature training. Being free of
possible errors in force sampling, each Newton iteration reliably
lowers the residual error. The system converges below 1% with
dozens iterations even in complicated simulations.

In our implementation, the subspaceHessian integration is carried
out over elements of K̃ in parallel. We leave the discussion with
more details to the next section.

7 HETEROGENEOUS CPU-GPU IMPLEMENTATION
Unlike IPC or medial elastics that runs either solely on CPU or
GPU, the implementation of medial IPC is hybrid on both comput-
ing units, aiming to fully harness the hardware power and push
the simulation performance to the limit. In this section, we give a
more comprehensive discussion of our implementation, and how
we assign different computation tasks along the simulation pipeline
to different hardware. Our overall philosophy is straightforward:
moving parallelable computations to the GPU as much as possible
while keeping the communication between CPU and GPU light.

7.1 Pipeline Overview
Fig. 8 sketches a high-level overview of our heterogeneous imple-
mentation. In the figure, computing tasks colored in green run on the
GPU, and tasks in blue are on the CPU. Specifically, our framework
takes the rest-shape vertex position (x𝑖 ), its weights from different
handles (𝑤 𝑗

𝑖
), and pre-built reduced mass matrix M̃ as input. At each

time step, the simulator also receives information of external force
in fullspace. We do not explicitly build a fullspace stiffness matrix
K = 𝜕f𝑖𝑛𝑡 /𝜕u ∈ R𝑁×𝑁 . Instead, 12-by-12 element stiffness matrix is
assembled on the GPU in parallel. As mentioned, we adopt an altered
Neo-Hookean material [Smith et al. 2018]. The PSD projection of
the elastic Hessian is dealt with by clamping eigenvalues of 3-by-3
and 2-by-2 matrices, where the SVD of deformation gradient at each
element is computed using the optimal SVD procedure described
in [McAdams et al. 2011]. Per-element external force, elastic force,
and Hessian are then projected into reduced forces and Hessian (see
§ 7.2).

In the meantime, with Δq computed from the previous iteration,
updating the medial distance between primitives is on the GPU. At
this step, model reduction brings the complexity down to the order
of O(𝑛2), and the computation only takes milliseconds. Therefore,
collision culling is not included in our pipeline. It is possible that,
for instance when the object undergoes a large nearly-rigid motion,
a high-level bounding volume could save some unneeded medial
distance updates. This benefit is marginal when putting into the
context of entire simulation time. After all, this paper does not aim
at a real-time simulation.
After the update of medial distance 𝑓 ∗, together with the corre-

sponding minimizer 𝛼∗, 𝛽∗ (and 𝛾∗ for slabs), we pass this informa-
tion as a O(𝑛2) array to the CPU, where the gradient and Hessian
of the IPC energy is computed with multi-threading. We find this
computation is better suited for CPU. The reasons are twofold. First,
while the maximal number of collision events could be O(𝑛2), in
reality the count of collisions among primitives is much smaller (e.g.,
a few hundred). The collision force preventing a pair of primitives
from interpenetrating each other resolves all the potential collisions
over triangles inside the primitive. In other words, the density of
collision events is spatially reduced under medial IPC. This not only
contributes a faster collision detection processing, more importantly
it also reduces the total iterations needed for resolving the collision
accurately. Secondly, we also need to perform PSD projection of the
IPC hessian. This step, unfortunately cannot be simplified to eigen-
problems of smaller sizes. CPU works better for this processing. We
defer the discussion of PSD projection for IPC Hessian to § 7.3.

The system assembly and solve could occur at either CPU or GPU
(i.e., in the form of AΔq = b as in Fig. 8), depending on the size of
the simulation problem and the internal format of the matrix. We
note that for small- and mid-scale simulation scenarios (i.e., 𝑛 is
in thousands), where the subspace system matrix can be directly
saved as a dense matrix, GPU outperforms CPU significantly using
cuSOLVER library. With an increased subspace size, a dense matrix
representation becomes prohibitive, and the sparse matrix format
should be used. In this situation, CPU takes back the lead. After the
system solve, the resulting Δq is to be mollified by the medial CCD
computation, which again runs on the GPU in parallel. Medial CCD
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returns a global TOI 𝑡∗, and the length ofΔqwill be adjusted if 𝑡∗ < 1.
Next, we provide mentionable details in some key implementations
along our pipeline.

7.2 Assembly of Reduced Elastic Hessian

The reduced elastic Hessian K̃ exhibits a block-wise structure simi-
lar to the conventional finite element stiffness matrix. Specifically,
K̃ can be partitioned into 𝑛 × 𝑛 sub-matrices, and a sub-matrix is
12-by-12 encoding the elasticity coupling between corresponding
handles. We first build a list of contributing elements for each 12-
by-12 sub-matrix. A so-called contributing element refers to the one
with at least one vertex holding a non-zero weight from the handles.
The weight influence of each handle is local due to the interpola-
tion property of biharmonics weighting. In our implementation, we
discard a weight coefficient smaller than 0.001 to explicitly enhance
the weight locality.
At each iteration, we first calculate updated element stiffness

matrix in parallel across all the elements on the model. After that,
we launch 𝑛(𝑛 + 1)/2 blocks on CUDA corresponding to sub-matrices
in the upper triangular part of K̃. Each CUDA block assembles the
12-by-12 sub-matrix assigned. Within the block, we also launch
12× (12+ 1)/2 = 96 threads i.e., the upper triangular part of the sub-
matrix to fully exploit the matrix symmetry. A thread computes an
entry of the 12-by-12 sub-matrix by applying Alg. ?? twice. We use
shared memory to minimize the latency of massive GPU memory
accesses. Specifically, each block allocates two segments of shared
memory. Threads first fetch and store the fullspace element stiffness
matrix (which is also 12-by-12, and only 96 entries are needed)
for the current element on the list. After the computation of this
element finishes, all the threads move to the next element on the
list. The second segment is for the reduced stiffness matrix block
being built, on which the summation is performed. It is possible, for
geometrically complicated models, that some handles house much
more contributing elements than others residing in some sharp and
salient locations on the model. Or the list just contains too many
elements. In this case, to maximize the parallelization performance,
we split the element list into multiple sub-lists, so that each sub-/list
is of roughly the same size, and it is not too long for being processed
by a single block.
We note that our implementation for reduced elastic Hessian

is specially crafted for medial IPC. If the subspace size 𝑛 is small,
parallelizing the matrix assembly at the 𝑛 × 𝑛 scale may not able
to fully occupy all the CUDA cores on the GPU. Sparse subspace
matrix and localized weight distribution also greatly relieve the
computation intensity of subspace integration.

7.3 PSD Projection of Distance Hessian
Similar to elastic Hessian, we need to ensure IPC Hessian is always
PSD by clamping its negative singular values. If an IPC energy
is between a pair of cones, its Hessian is a 48-by-48 matrix. Its
dimensionality increases to 96 for a slab-slab IPC. Computing SVD
for matrices of this size is expensive, and should be avoided. As one
can tell from Eq. (11), the IPC energy is convex with respect to the
medial distance. Therefore, PSD projection only needs to take care
of the Hessian matrix of the medial distance. To better expose this

fact, we re-write the distance Hessian as:
𝜕2 𝑓

𝜕q2
=

𝜕c
𝜕q

⊤ (
𝜕2 𝑓

𝜕c2

)
𝜕c
𝜕q

, (28)

where we concatenate sphere centers and two ends of C1 and C2 into
a single vector: c = [𝑐⊤1,1, 𝑐

⊤
1,2, 𝑐

⊤
2,1, 𝑐

⊤
2,2]
⊤ ∈ R12×1. Note that 𝜕2c/𝜕q2

is vanished, and 𝜕c/𝜕q is essentially a selection matrix, picking
translational DOFs out of q (c is prescribed by the translational
DOFs at relevant handles). Therefore, 𝜕2 𝑓 /𝜕c2 is the only possible
source of negative definiteness, which is a 12-by-12 matrix. If the
medial distance is between a sphere and a slab, c remains a 12-
dimension vector containing the coordinate of the sphere center
and three medial vertices on the slab. In our implementation, we
actually compute 𝜕𝑓 /𝜕c and 𝜕2 𝑓 /𝜕c2 first, instead of directly using
Eq. (13). As this computation occurs on CPU, we use built-in SVD
routine from Eigen library [Guennebaud et al. 2010] for the PSD
projection. The resulting 𝜕2 𝑓 /𝜕c2 is always PSD (so the system
matrix is positive definite after mass regularization) and converted
to the dimension of q afterwards.

8 EXPERIMENTAL RESULTS
We have implemented the proposed medial IPC framework on a
desktop computer with an intel i7 9700CPU and an nVidia Titan
RTX GPU (with 16G GPU memory). We tested our system on a va-
riety of geometrically complex models in collision- and contact-
intense scenes. In many tests, we also compare our method with
fullspace IPC simulation. We show that our system delivers signifi-
cant speedups over the full simulation. The simulation results are
also high-quality and indistinguishable from full IPC. As discussed
in § 7, our implementation is hybrid. The system matrix is solved
with cuSOLVER if on GPU, and MKL PARDISO if on CPU. We also used
Eigen library for PSD projection and other light CPU linear algebra
calculations. We refer readers to the supplementary video for more
animated results.

Table 1. Geometric specifications of deformable models. # Ele. and # Tri.
are total numbers of tetrahedra on the simulation mesh and triangle faces
on the surface. #MP represents the total number of medial primitives on
the reduced model, and 𝑛 is the size of the subspace. The former determines
the computation intensity for update medial distance and CCD, and the
latter determines the time needed for reduced system solve. MAT gives
the pre-computation time for build the initial MAT of the mode. QM is the
computation time used for simplifying the initial MA with Q-MAT [Li et al.
2015]. BW is the time used to compute biharmonics weight [Jacobson et al.
2011]. All the timing records (the last three columns) are in seconds.

# Ele. # Tri. # MP (𝑛) MAT QM BW
Puffer ball 625K 120K 1, 324 (19, 488) 776 73 13
Ship 487K 236K 610 (8, 136) 640 64 4
Armadillo 95K 62K 142 (1, 200) 362 6 1
Dinosaur 56K 30K 127 (1, 200) 133 2 1
Cactus 693K 308K 454 (6, 420) 860 60 8

8.1 Model Specifications
Tab. 1 reports specifications of 3D models in experiments. Most of
deformable models we have tested are geometrically complex with
concave and fine local structures. Such geometry is not friendly
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for traditional modal analysis. However, medial IPC well captures
their dynamic deformations because MAT intends to assign medial
vertices at non-smooth locations for a better shape approximation.

To generate MAT, we need an initial Voronoi tessellation [Amenta
and Bern 1999]. This step could take a fewminutes. After that, we use
Q-MAT [Li et al. 2015] to simplify the resulting MAT and obtain the
medial mesh for handle placement. Biharmonic weights at vertices
are pre-computed and are processed in parallel with multi-threading
on CPU. These represent all the pre-computations of medial IPC
(see the pre-computation timing information in Tab. 1), as we do
not need to generate training poses and carry out Cubature training.
In general, medial mesh computed automatically suffices and works
well in follow-up simulations. However, one could also manually
put more handles to the model to cater for specific requirements.
Collision forces are explicit in medial elastics. This is not the case
in medial IPC, where all the models are coupled implicitly via IPC
barrier. Therefore, if a simulation scene involves multiple objects,
the system size is the sum of subspace sizes of all the participating
models. This echoes our original argument: model reduction is
more efficacious for CCD-based simulations as you easily arrive at
a simulation problem of a very high dimension.

Fig. 9. When we set time step to 1/30, the simulation of the barbarian ship
with medial IPC remains robust and interpenetration-free. In addition to
Fig. 1, we report more simulation snapshots of medial IPC (top) and medial
elastics (bottom). We can see from those zoom-in views, many collisions are
not correctly resolved with DCD in medial elastics.

8.2 Collision Free with Efficiency
CCD works seamlessly with medial IPC in the reduced space. It is
certainly more expensive than DCD, but in turn, CCD guarantees
the simulation being collision-free at any time instance. Explicit
collision handling as in medial elastics does not have this property.
When we have faster-moving objects, sharp local geometries, or big
time steps, artifacts like overlapping and penetration are inevitable.
In the experiment shown in Fig. 1, we compare the results using
medial IPC and medial elastic in the falling barbarian ship simula-
tion to show case the difference between CCD and DCD. The ship
model consists of nearly half-million elements (487K), and it falls
over an array of rods. The volumetric tetrahedral mesh is created by
voxelizing the input surface model [James et al. 2004]. With a con-
servative time step size like 1/100, the result from medial elastics is
plausible and similar to ours. However, if we increase the time step
size to 1/50, a zoom-in view reveals many “pass throughs” as elastic
paddles at ship sides move swiftly through each other within a time

step. When the mast passes the canvas, it could stay penetrated
by multiple triangles on the canvas and generate ghost “shaking
force” (i.e., see this artifact in the video). On the other hand, medial
IPC does not have this issue. We further increase the time step to
1/30, and medial IPC consistently produce collision-free animations
while more pass-throughs are observed with medial elastics (Fig. 9).

Our method Full IPC

Fig. 10. The animation quality from medial IPC is close to full simulation.
Readers can also find this animation in the supplementary video.

We also compared medial IPC with full IPC side by side in this
experiments, and a snapshot can be found in Fig. 10. The results
are very similar to each other despite that medial IPC runs two
hundred times faster. We refer readers to the supplementary video
for animated comparative results.

Our method

Full IPC

Fig. 11. Flying dinosaur into soft “house of cards”. Friction can be accurately
modeled with medial IPC. In this experiment, a dinosaur flies into a stack
of thin elastic boards, which are stacked together under static frictions
initially. Under the impact from the dinosaur, the “house of cards” crashes
and falls on the floor. In this experiment, the dinosaur has 100 handles, and
each board has 25 handles. Medial IPC produces highly realistic animation
with 25× speedups. We also put snapshots from full IPC simulations at the
bottom for the reader’s reference.

8.3 Friction in Medial IPC
Following Li and colleagues [2020], we approximate friction forces
defined by Maximal Dissipation Principle [Moreau 2011] by smooth-
ing the transition between static and dynamic friction forces up to
𝐶1-continuous, and then apply a semi-implicit temporal discretiza-
tion on the tangent operator and normal force 𝜆 to define a lagged
friction potential for our optimization time integrator. This provides
us a robust friction model that resolves static friction with control-
lable accuracy as in full IPC [Li et al. 2020]. To compute the tangent
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Fig. 12. The dinosaur falls into a bush of cactus. Under a large friction coefficient, the dinosaur gets stuck in the cactus (top). There are 535 handles placed at
the cactus in total. If we reduce the friction coefficient, the dinosaur eventually falls on the ground (bottom). We believe this experiment show cases the an
important advantage of medial IPC over PD-based medial elastics, where friction tuning is less intuitive.

operator, for a given primitive pair, we compute the medial distance
and the corresponding minimizer 𝛼∗, 𝛽∗, and 𝛾∗ (for a slab). They
correspond to a point on the edge of the primitive. The tangent
space of the contact is then defined as the orthogonal plane at the
middle point. This is consistent to the full IPC where tangent plane
is directly computed from primitive relative positions. But for com-
puting normal force 𝜆, the barrier gradient for MAT primitives also
includes ∇𝑟 i.e., the change of radius on the primitives, which could
not be easily factored out. Fortunately, our distance function (Eq. 6)
can be viewed as an approximation to the squared distance between
primitive surfaces (Eq. 5), we can thus apply the same normal force
expression of as in full IPC to compute an approximated 𝜆 by simply
swapping out the distance values. Since the error to this approxi-
mation vanishes as the distance goes to 0, it does not introduce any
visual inaccuracies in our experiments.

An example is reported in Fig. 11, where we have a stack of
rubber boards forming a “house of cards” by static card-card friction
and card-floor friction. After that, a dinosaur flies in and hit the
card. This collision breaks the static friction and generates sliding
frictions. We also put full simulation results in the figure for the
reader’s reference. Another experiment is shown in Fig. 12. The
dinosaur model now jumps into a cactus bush in the desert (total
535 handles). With high friction coefficient, the dinosaur model is
stuck in the cactus while the cactus branches are interacting each
other intensively. If we reduce the friction coefficient, we can see
the dinosaur eventually falls on the ground. Such friction-involving
effect is not native to PD-based method like medial elastics.

8.4 How Much We Should Reduce
As a reduced simulation method, medial IPC seeks for the converg-
ing spot between simulation quality and computation performance,
with the presence of CCD and implicit collision resolve. To this end,
we would like to investigate, at least visually, the relation between

20 handles 50 handles

200 handles Ground truth

Fig. 13. We compare how does the sparsity of the handle placement in-
fluence the final deformation effect. An over-aggressive reduction leads to
artifacts. For instance, when we only have 20 handles without nonlinear
simulation DOFs, it can be seen that medial IPC tries to use large local
shearing to “mimic” the bending at the back. Fortunately, this artifact is
greatly relieved with more handles. The simulation under 50 or 200 handles
is very close to the ground truth, where the system solve only needs dozens
of milliseconds.

the handle sparsity (subspace size) and final animation quality. An-
other motivation for this experiment is the lack of nonlinear DOFs
in medal IPC. Unlike some existing work [Lan et al. 2020; Luo et al.
2018; Martin et al. 2010], we do not put quadratic handles on the
medial mesh due to the concern of GPU memory footprint (i.e., as
discussed in § 6). As a counterstrategy in medial IPC, we try to add
more linear handles to provide sufficient freedom to the animation.
In Fig. 13, we report an experiment, where we fix hands and feet of
the Armadillo and apply a large force at its back to trigger a sharp
deformation. We compare the deformed poses simulated with 20,
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50, and 200 handles. We can clearly observe artifacts when the total
number of handle is limited (e.g., 20). Populating more handles is
quite effective in improving the visual effects. When we have a bit
more handles e.g., 50 handles added, the results look very similar
to the ground truth. In our other experiments, we normally have
much more handles placed on the model.

Fig. 14. In this stress test, we drop a puffer ball into a zigzag wooden shelf.
There are 625K elements and 1, 624 handles on the puffer ball. The subspace
size of one puffer ball is around 20K. In this experiment, i7 9700 outperforms
Titan GPU by 75% (1.2 vs. 2.1 seconds). A similar performance lead takes
place for CPU after we add one more puffer ball into the simulation (4.3
vs. 2.8 seconds). Regardless, medial IPC is 36× and 26× faster than the full
simulation in those two settings respectively.

8.5 CPU/GPU Performance vs. System Size
As discussed in Fig. 8, medial IPC runs on both GPU and CPU
in an coordinated way. The medial distance update, element-wise
matrix assembly and subspace integration are all carried out on GPU.
Distance gradient/Hessian and its PSD projection are on CPU. The
undecided component, and also the most expensive computation,
is the system solve, which is either on CPU or GPU. Because our
system matrix is always positive definite with PSD Hessian, we use
Cholesky factorization shipped with cuSOLVER or MKL to solve the
system matrix on GPU or CPU. The question is which platform
should we choose?
In order to better explain this question, we design a challenging

simulation scene: dropping a puffer ball with hundreds of elastic
strings on its surface to a zigzag wooden shelf. The result of the
simulation is reported in Fig. 14 (top). The puffer ball has 610K
elements with 1, 624 handles placed: each string has five handles, and
we put 24 handles on its main spheroid body. The reduced system
size of a single such puffer ball is close to 20K (1, 624 × 12 = 19, 488).
That is bigger than two barbarian ships. We not only compare the
animation effects with full FEM/IPC simulation, but also record the
system solve time for this experiment on CPU and GPU. We find

that Titan GPU gets outperformed by i7 9700 at this problem scale,
where it takes 2.1 seconds on the GPU, and only 1.2 seconds on the
CPU.

Fig. 15. When we push medial IPC to
simulate five puffer balls, the subspace
size is almost 100K. In this case, we
choose CPU for system solve. In this
extreme reduced simulation, medial
IPC is 14× faster.

Next, we include two puffer
balls into the scene (Fig. 14 (bot-
tom)). The added puffer ball
significantly enriches the de-
formation effects. Because of
implicit IPC, the system to be
solved at each Newton itera-
tion is also doubled at around
40K (38, 976). Again, MKL on
i7 9700 holds a big lead for
the system solve (4.3 seconds
on the GPU vs. 2.8 seconds
on the CPU). In Fig. 15, we
further push the problem size
to include five puffer balls. In
this simulation, subspace size
reaches 10K, which is bigger
thanmany full simulation prob-
lems. The lead of CPU has been
narrowed, and the system solve
time is 6.9 seconds on GPU and
6.5 seconds on CPU.

Wemay conclude from those
observations that GPU is best
at carrying out computations that are straightforwardly paralleliz-
able, such as matrix multiplication subspace projection, per-element
matrix assembly etc. For general and sequential computations e.g.,
matrix factorization, the speedup of the GPU is not “native”, and it
over-consumes the hardware resource (massive need for temporary
memory, shared memory, register assignment, etc.), which is only
possible for problems of moderate sizes. This makes GPU a perfect
platform for reduced simulation. After all, subspace space of 10K
is rare in practice, and we observe excellent performance boost for
smaller subspaces of regular sizes.
In this set of experiments, another noteworthy implementation

detail is the storage of the subspace system matrix. In general, a
reduced model uses dense matrix to represent reduced elastic Hes-
sian and system matrix. We follow this principle in medial IPC as
well. However, when we have multiple models in the simulation,
the total size of the system is multiplied, and dense system matrix
becomes prohibitive. To this end, we save the system matrix with
CSR form explicitly as a sparse matrix whenever we have multiple
objects in the simulation. This may be another reason behind slower
performance on GPU. In the experiment shown in Fig. 14 bottom,
Titan fails to process the resulting system matrix if we just use the
dense format.

8.6 Time Profiling
We now give detailed timing information of the medial IPC pipeline
for experiments in Figs 1, 11, 14, and 15 in Tab. 2. Medial IPC uses
the medial primitive as the collision processing unit, which becomes
much more efficient on GPU. Because CCD must be used at each
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Table 2. We report time statistics for each major step along the medial IPC pipeline. We give both CPU and GPU performance. # Barrier gives the total
number of primitive pair CCD performed, and the average number of colliding pairs. In medial IPC, primitives are never in physical contact. The number is
actually the count of active barrier energies between primitives. Ele. stiff. is the total time used for assembling element stiffness matrix (in milliseconds).
Reduced int. reports the total time used for subspace force and Hessian integration (in seconds). ∇2 IPC (in milliseconds) is the time used for computing IPC
Hessian and gradient. This computation is on CPU. Medial dist. is the time used for updating medial distance between primitives (in milliseconds). CCD (in
milliseconds) is CCD processing time. Solve/it. is the time for solving the linearized system. It could be either on GPU or CPU. # it. is the average iteration
numbers needed in the example. Time/frame (in seconds) is the total time on average for one frame of the simulation.

# Barrier Ele. stiff. Reduced int. ∇2 IPC Medial dist. CCD Solve/it. # it. Time/frame
Fig. 1 1.4M | 188 36.4 | 4.4K 2.4 | 46.8 6.5 3.3 | 182.1 23.6 | 5.7K 1.8 15 10.1 (110×)
Fig. 11 0.32M | 536 11.2 | 0.2K 0.1 | 9.8 1.7 1.2 | 34.6 14.5 | 1.1K 0.12 10 2.6 (25×)
Fig. 12 0.28M | 89 28.4 | 3.0K 1.7 | 32.7 3.6 < 1 | 39.8 7.7 | 1.2K 0.54 9 20.8 (38×)
Fig. 14 (top) 0.95M | 1.9K 31.5 | 2.8K 1.1 | 13.1 9.3 2.1 | 115.2 40.6 | 3.8K 1.2 8 19.4 (36×)
Fig. 14 (bottom) 3.9M | 3.5K 54.3 | 5.5K 1.9 | 26 25.6 4.7 | 463.6 161.2 | 15.8K 2.8 13 65.2 (26×)
Fig. 15 24.3M | 11.7K 147.6 | 14.4K 4.1 | 67.2 131.5 7.8 | 3.0K 353.4 | 102.9K 6.6 18 207.3 (14×)

Newton iteration, this acceleration is scaled by total iteration needed.
In the table, we report both CPU and GPU running time as well as
the fullspace solve time for readers’ reference.
The acceleration mechanism in medial IPC is similar to other

model reduction frameworks, where the acceleration rate is dom-
inantly reflected by the fullspace-subspace ratio. In the barbarian
ship shown in Fig. 1, this ratio is over 50 : 1, which is the highest in
all our experiments, and we receive a one-hundred-time speedup.
Meanwhile, the ratio for one puffer ball simulation is only at 22 : 1,
and medial IPC acceleration is weakened too. In addition, when
the system matrix must be explicitly saved as a sparse matrix and
solved at CPU, the acceleration rate further drops (e.g., in Fig. 15).

9 CONCLUSION AND LIMITATION
In this paper, we present a reduced simulation framework, and we
name it as medial IPC. From a high level, medial IPC integrates
most desired features of medial elastics and IPC into unified frame-
work. Specifically, our subspace is built based on the MAT, which
is able to capture rich and interesting deformable effects. We do
not follow a projective dynamics but stick with classic Lagrangian
mechanics. Therefore, medial IPC not only models real-world hy-
perelastic materials but also robustly deals with implicit contact
in complicated simulation problems. In the meantime, we follow
the concept of barrier function, combined with CCD in line search,
in the IPC to process collision and contact implicitly. While this
overall idea is straightforward, as we have shown we address several
tough technical challenges in this system. All the computations are
directly based on the reduced coordinate, which avoids unnecessary
fullspace-subspace projections. We propose a novel GPU imple-
mentation that removes the Cubature training as in other model
reduction systems. Medial IPC is carefully engineered with a hybrid
GPU-GPU implementation. We have shown compelling animation
results from our method, which is similar to the one obtained from
a full simulation but the simulation time is shortened by orders.
Our system also has some limitations. First of all, our system is

carefully crafted for MAT and IPC. This is a double-edge blade: at
one hand, we fully optimize our implementationwith dedicated CPU
and GPU coordination; on the other hand, such implementation is
less general and may not be applicable for other model reduction

frameworks. For instance, our subspace matrix has a unique sparse
structure (e.g., see Eq. (3)), if the subspace matrix is constructed by
other methods like modal analysis [Pentland and Williams 1989] or
component mode synthesis [Yang et al. 2015], the subspace force
and Hessian integration could be much slower, and the GPU acceler-
ation should be deployed in a different way. Medial IPC idealizes the
collision model in two ways. 1) Medial IPC ignores within-primitive
self-collision. We consider a primitive a basic deformation unit and
assume triangles within a primitive do not collide. While such as-
sumption is reasonable in most situations, it also shares an inherent
limitation of medial elastics. The inconsistence of medial primitives
and deformed vertices positions (the former is linearly interpolated
and the latter is blended using harmonics weights) may fail the
collision detection under extreme deformations. 2) Medial IPC also
assumes that the radii of primitives are unchanged. With hundreds
of handles, MAT is able to tightly encapsulate the deformed shape
without the radius update. However, if one really needs to push
the accuracy of between-primitive collisions, it is also possible to
evaluate the derivative of medial distance with respect to the radius.
Following the idea of barrier function, medial IPC is as robust as
full IPC in the simulation. On the downside, it also fails the solver
if a penetration occurs, which may be an outside error from the
simulation input. We do not have any mechanisms to fix the bar-
rier function under a negative medial distance. Medial IPC is not
profitable under any subspace sizes. However, we believe this is a
common drawback for model reduction methods – no one works
perfectly by default for any situations.
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A 𝜕𝑋/𝜕q AND 𝜕2𝑋/𝜕q2
In this appendix, we give formulations of first- and second-order
partial derivatives of 𝑋 (i.e., 𝐴 to 𝐹 coefficients of Eq. (7) in § 4). It
is not difficult to see from Eqs. (8) and (9) that those coefficients
are quadratic functions of sphere centers on C1 and C2, and the
latter are prescribed by the generalized coordinate q. Hence, all the
coefficients have linear gradients and constant Hessians.
Let q =

[
q1,1, q1,2, q2,1, q2,2

]⊤ ∈ R48 be the generalized coor-
dinate of four handles at C1 and C2. The derivatives of 𝑋 with
respect to other handle DOFs are clearly zero. C𝑖 =

[
𝐶⊤
𝑖
, 01×9

]
, for

𝑖 = {1, 2, 3} is a 12-dimension row vector with last nine elements
zero padded, and𝐶𝑖 is given in Eq. (8).Q = [2I, 03×9]. The first-order
derivatives of 𝜕𝑋/𝜕q are:

𝜕𝐴

𝜕q
= [2C1,−2C1, 0, 0] ,

𝜕𝐵

𝜕q
= [2C2,−2C2,−2C1, 2C1] ,

𝜕𝐶

𝜕q
= [0, 0,−2C2, 2C2] ,

𝜕𝐷

𝜕q
= [2C3, 2(C1 − C3), 0,−2C1] ,

𝜕𝐸

𝜕q
= [0, 2C2,−2C3,−2(C2 − C3)] ,

𝜕𝐹

𝜕q
= [0, 2C3, 0,−2C3] .

The Hessian matrices can then be obtained by:

𝜕2𝐴

𝜕q2
=


Q −Q 0 0
−Q Q 0 0
0 0 0 0
0 0 0 0

 ,
𝜕2𝐵

𝜕q2
=


0 0 −Q Q
0 0 Q −Q
−Q Q 0 0
Q −Q 0 0

 ,
𝜕2𝐶

𝜕q2
=


0 0 0 0
0 0 0 0
0 0 Q −Q
0 0 −Q Q

 ,
𝜕2𝐷

𝜕q2
=


0 Q 0 −Q
Q −Q 0 Q
0 0 0 0
−Q Q 0 0

 ,
𝜕2𝐸

𝜕q2
=


0 0 0 0
0 0 −Q Q
0 −Q 0 Q
0 Q Q −Q

 ,
𝜕2𝐹

𝜕q2
=


0 0 0 0
0 Q 0 −Q
0 0 0 0
0 −Q 0 Q

 .
B 𝜕2 𝑓 /𝜕𝑋 2 FOR CASE 6 IN § 4.2
Wegive all the second andmixed derivatives of the cone-conemedial
distance with respect to coefficients 𝐵 to 𝐸 (i.e., in Eq. (7)).

B.1 Second-derivatives of coefficient 𝐵

𝜕2 𝑓
𝜕𝐵𝜕𝐴

=
𝐵𝐷 − 2𝐴𝐸
4𝐴𝐶 − 𝐵2

(
−4𝐶 (𝐵𝐸 − 2𝐶𝐷)
(4𝐴𝐶 − 𝐵2)2

)
+ 𝐵𝐸 − 2𝐶𝐷

4𝐴𝐶 − 𝐵2

(
− 2𝐸
4𝐴𝐶 − 𝐵2

− 4𝐶
(4𝐴𝐶 − 𝐵2)2

)
,

𝜕2 𝑓

𝜕𝐵2
=
𝐵𝐷 − 2𝐴𝐸
4𝐴𝐶 − 𝐵2

(
𝐸

4𝐴𝐶 − 𝐵2
+ 2𝐵(𝐵𝐸 − 2𝐶𝐷)
(4𝐴𝐶 − 𝐵2)2

)
+ 𝐵𝐸 − 2𝐶𝐷

4𝐴𝐶 − 𝐵2

(
𝐷

4𝐴𝐶 − 𝐵2
+ 2𝐵(𝐵𝐷 − 2𝐴𝐸)
(4𝐴𝐶 − 𝐵2)2

)
,

𝜕2 𝑓
𝜕𝐵𝜕𝐶

=
𝐵𝐷 − 2𝐴𝐸
4𝐴𝐶 − 𝐵2

(
− 2𝐷
4𝐴𝐶 − 𝐵2

− 4𝐴
(4𝐴𝐶 − 𝐵2)2

)
+ 𝐵𝐸 − 2𝐶𝐷

4𝐴𝐶 − 𝐵2

(
−4𝐴(𝐵𝐷 − 2𝐴𝐸)
(4𝐴𝐶 − 𝐵2)2

)
,

𝜕2 𝑓
𝜕𝐵𝜕𝐷

=
𝐵𝐷 − 2𝐴𝐸
4𝐴𝐶 − 𝐵2

(
− 2𝐶
4𝐴𝐶 − 𝐵2

)
+ 𝐵𝐸 − 2𝐶𝐷

4𝐴𝐶 − 𝐵2

(
𝐵

4𝐴𝐶 − 𝐵2

)
,

𝜕2 𝑓
𝜕𝐵𝜕𝐸

=
𝐵𝐷 − 2𝐴𝐸
4𝐴𝐶 − 𝐵2

(
𝐵

4𝐴𝐶 − 𝐵2

)
+ 𝐵𝐸 − 2𝐶𝐷

4𝐴𝐶 − 𝐵2

(
− 2𝐴
4𝐴𝐶 − 𝐵2

)
.

B.2 Second-derivatives of coefficient 𝐶
𝜕2 𝑓
𝜕𝐶𝜕𝐴

= 2𝐵𝐷 − 2𝐴𝐸
4𝐴𝐶 − 𝐵2

(
− 2𝐸
4𝐴𝐶 − 𝐵2

− 4𝐶
(4𝐴𝐶 − 𝐵2)2

)
,

𝜕2 𝑓
𝜕𝐶𝜕𝐵

= 2𝐵𝐷 − 2𝐴𝐸
4𝐴𝐶 − 𝐵2

(
𝐷

4𝐴𝐶 − 𝐵2
+ 2𝐵(𝐵𝐷 − 2𝐴𝐸)
(4𝐴𝐶 − 𝐵2)2

)
,

𝜕2 𝑓

𝜕𝐶2 = 2𝐵𝐷 − 2𝐴𝐸
4𝐴𝐶 − 𝐵2

(
−4𝐴(𝐵𝐷 − 2𝐴𝐸)
(4𝐴𝐶 − 𝐵2)2

)
,

𝜕2 𝑓
𝜕𝐶𝜕𝐷

= 2𝐵𝐷 − 2𝐴𝐸
4𝐴𝐶 − 𝐵2

(
𝐵

4𝐴𝐶 − 𝐵2

)
,

𝜕2 𝑓
𝜕𝐶𝜕𝐸

= 2𝐵𝐷 − 2𝐴𝐸
4𝐴𝐶 − 𝐵2

(
− 2𝐴
4𝐴𝐶 − 𝐵2

)
.

B.3 Second-derivatives of coefficient 𝐷
𝜕2 𝑓
𝜕𝐷𝜕𝐴

= −4𝐶 (𝐵𝐸 − 2𝐶𝐷)
(4𝐴𝐶 − 𝐵2)2

,

𝜕2 𝑓
𝜕𝐷𝜕𝐵

=
𝐸

4𝐴𝐶 − 𝐵2
+ 2𝐵(𝐵𝐸 − 2𝐶𝐷)
(4𝐴𝐶 − 𝐵2)2

,

𝜕2 𝑓
𝜕𝐷𝜕𝐶

= − 2𝐷
4𝐴𝐶 − 𝐵2

− 4𝐴
(4𝐴𝐶 − 𝐵2)2

,

𝜕2 𝑓

𝜕𝐷2 = − 2𝐶
4𝐴𝐶 − 𝐵2

,
𝜕2 𝑓
𝜕𝐷𝜕𝐸

=
𝐵

4𝐴𝐶 − 𝐵2
.

B.4 Second-derivatives of coefficient 𝐸
𝜕2 𝑓
𝜕𝐸𝜕𝐴

= − 2𝐸
4𝐴𝐶 − 𝐵2

− 4𝐶
(4𝐴𝐶 − 𝐵2)2

,

𝜕2 𝑓
𝜕𝐸𝜕𝐵

=
𝐷

4𝐴𝐶 − 𝐵2
+ 2𝐵(𝐵𝐷 − 2𝐴𝐸)
(4𝐴𝐶 − 𝐵2)2

,

𝜕2 𝑓
𝜕𝐸𝜕𝐶

= −4𝐴(𝐵𝐷 − 2𝐴𝐸)
(4𝐴𝐶 − 𝐵2)2

,

𝜕2 𝑓
𝜕𝐸𝜕𝐷

=
𝐵

4𝐴𝐶 − 𝐵2
,

𝜕2 𝑓

𝜕𝐸2
= − 2𝐴

4𝐴𝐶 − 𝐵2
.
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