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Abstract

This paper presents a system for design and simulation of supporting tube structure. We model each freeform tube component as a swept surface,
and employ boundary control and skeletal control to manipulate its cross-sections and its embedding respectively. With the parametrization of
the swept surface, a quadrilateral mesh consisting of nine-node general shell elements is automatically generated and the stress distribution of
the structure is simulated using the finite element method. In order to accelerate the complex finite element simulation, we adopt a two-level
subspace simulation strategy, which constructs a secondary complementary subspace to improve the subspace simulation accuracy. Together with
the domain decomposition method, our system is able to provide interactive feedback for parametric freeform tube editing. Experiments show
that our system is able to predict the structural character of the tube structure efficiently and accurately.

c© 2011 Published by Elsevier Ltd.

Keywords: , Thin shell, Swept surface, FEM, Model reduction, Domain decomposition

1. Introduction

Tubes serve as a type of important supporting structure and
are commonly used in people’s everyday life (Fig. 1). Tradi-
tionally, such supporting structures are often hollow to conserve
the manufacture cost and self-weight. They mostly consist of
regular cylinders, which are more budget-friendly for mass pro-
duction with traditional manufacturing techniques. On the other
hand, the rapid development of prototype technology (e.g. 3D
printing) makes personalized and customized tube fabrication
using generalized cylinders conveniently possible, which great-
ly expands the designing space of supporting tubes.

Although most existing computer-aided design (CAD) soft-
wares (e.g. AutoCAD) well support the geometric design of
such tubular structures. Users still need to manipulate many
geometric degrees of freedom (DOFs) to model freeform tubes.
Interpolatory and tangential controls at the boundary cross-sections
are two widely-adopted mechanisms to control the shape of the
tube. However, profile control [1] or solving higher-order dif-
ferential equations [2] is still necessary to prevent shape distor-
tion, which is often tedious or time-consuming. On the other
hand, existing CAD packages merely focus on the aspect of
shape editing while the structural properties of the 3D model
remain unknown to novice users. Following the trend of design-
simulation integration, current commercial produces start to en-

Image sources：
http://journeyeast.com/products/tubeline-stool
http://www.pinterest.com/robertpatterson/pipe-furniture

Figure 1. Two furniture designs using supporting tubes.

able user to analyze their design using finite element method.
Unfortunately, an accurate simulation of the structural charac-
teristic of a customized tubular structure is expensive because
generalized shell element with high-order shape functions is
usually required to avoid shear-locking artifact [3] and a sim-
ulator often possesses a large number DOFs that is prohibitive
to regular desktop computers, not to mention performing inter-
active structural analysis of the 3D model being edited.

As a response to the aforementioned challenges, we present
a system for interactive design and simulation of supporting
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tubular structures. Tube components can be intuitively edit-
ed using boundary and skeletal controls and a complex tube
system can be handily created by assembling tube components
at their open interfaces. The underlying simulation is carried
out using general quadratic nine-node quadrilateral element. A
constraint subspace is constructed at each component, which
serves as the primary subspace for the follow-up structural anal-
ysis. On the top of the constraint subspace, we build a load-
dependent secondary subspace named residual subspace, which
is able to precisely capture the detailed intra-component deflec-
tion due to the regional external loads without resorting to ex-
pensive full-space simulation. As a result, our system is able to
provide interactive yet accurate structural analysis along with
the editing operation of the tube.
Contribution In general, the contribution of our work can be
briefly summarized as follows:

• This paper presents a system integrating parametric shape
editing and finite element method based structural analy-
sis into a unified environment for the design and simula-
tion of freeform tubular supporting structures.

• We provide user an intuitive shape design mechanism
with lower geometric DOFs by using the boundary and
skeletal controls to manipulate the geometry of each tube
component.

• A new simulation strategy is proposed based on the fact
that the supporting tube is often of light self-weight com-
paring to its external loads. We use a two-level subspace
simulation that is able to accurately capture the deflection
induced by external loads while still keep the simulator
compact.

2. Related Work

Swept surface is often used to model general cylinders [4]
by transforming cross-section curves along a smooth rotation
field on a swept trajectory. Topics such as how to design s-
mooth rotation field on a given trajectory [5, 6], how to interpo-
late cross-section curves [7, 8] and how to support profile edit-
ing [9, 10] are all well studied in the literature. However, it is
tedious to manipulate lots of control vertices of swept surfaces
represented by standard tensor product spline surfaces. Recent-
ly, You et al. [1] suggest modeling swept surfaces by solving
ordinary differential equations (ODE). They showed that inter-
polatory and tangential boundary controls are available by using
fourth-order ODE, which leads to lower DOFs in controlling
the shape of swept surfaces. They also derived analytical so-
lutions to six-order partial differential equations and gave extra
curvature control to swept surfaces [11]. The similar idea is also
exploited in shape modeling using meshed surfaces. In [12, 2],
the authors showed that generalized cylinders can be obtained
by solving harmonic and higher-order harmonic equations. In
our system, the geometric design of freeform supporting tubes
is motivated by these existing studies.

Thin shell element is a natural choice for the tubular struc-
ture, which has a high width-thickness ratio. Such degener-
acy motivates researchers, especially in graphics community,
to seek for alternative energy models to capture the deforma-
tion of thin shell in a more efficient and intuitive manner such
as spline/NURBS [13, 14, 15], hinge-based bending [16, 17,
18, 19], or meshless method [20, 21, 22], rather than resort-
ing to classic strain theory [23]. Zhang et al. [24] proposed to
use 1D orientated rod element with incremental strain theory
to model the thin shell structure, which could be considered as
an extended version of mass-spring system. While compelling
results have been reported, these methods only produce physi-
cally plausible animations while we are looking for an accurate
simulation that directly serves for potential follow-up fabrica-
tion (e.g. via 3D printing).
Design-simulation integration has received increased atten-
tion recently and fabrication-purposed design system becomes
an active research topic. Simulation based optimization has
been widely applied to make sure the fabricated object possess-
es the desired structural robustness [25, 26, 27], kinematic con-
straints [28, 29], and deformable behavior [30, 31, 32]. There
are also many contributions trying to unify the simulation and
the design processing. Umetani et al. [33] present a garmen-
t designing system that allows an interactive editing between
2D patterns and 3D simulated draped forms. Cirak et al. [34]
propose to use subdivision surface for the design-simulation in-
tegration for thin-shell objects.
Simulation acceleration stands out a grand technical challenge
for the integration of design simulation because an accurate fi-
nite element method (FEM) [3] simulation is often expensive
while timely-coupled design-simulation environment is always
favored. To accelerate the FEM simulation of thin shell, Seth et
al. [35] employ a multi-resolution framework. In regular FEM
simulation of 3D solid volume, subspace modal reduction is a
widely used technique [36, 37, 38] and it can also be applied to
accelerate thin-shell simulation [39].
Our method well complements exiting contributions by de-
veloping a design-simulation framework based on domain de-
composition [40] and finite element tearing and interconnec-
t (FETI) method [41], as we notice that tubular structures are
often component-wise and the geometric symmetry common-
ly exists. The geometry of each tube component is dealt with
using boundary and skeletal controls. The structural behavior
is simulated using quadratic nine-node quadrilateral mesh au-
tomatically generated via the surface parametrization, which
will assign five DOFs for each free node. To accelerate the
simulation, we construct the component-level subspace based
on an engineering technique named component mode synthe-
sis (CMS) [42, 43]. Improved simulation accuracy is achieved
by computing the residual deflection within a load-dependent
secondary subspace. As a result, our system is able to provide
accurate stress analysis while keeping the simulator compact
and efficient.
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Figure 2. An overview of the proposed design-simulation system.

3. System Overview

Fig. 2 sketches an overview of the proposed design-simulation
system. The entire structure is composed of multiple tubular
components which are inter-connected at their interfaces. The
shape of each component is modeled as a swept surface that
can be freely edited with an intuitive interface that allows user-
s to manipulate key cross-section curves and their trajectory
(Sec. 4). Based on the parameterization, a quadrilateral finite
element mesh is automatically generated. Each of its element
is a nine-node quadratic shell element (Sec. 5), where the mid-
edge nodes are determined using cubic Hermite interpolation.
We adopt a two-level subspace simulation strategy to acceler-
ate the simulation so that an interactive structural analysis is
made possible (Sec. 6) and the stress distribution can be timely
visualized by the designer to ensure the tubular model is robust
and stable under the prescribed external loads.
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Figure 3. The boundary conditions and sweep trajectory of a freeform tube.
The designed freeform tube is on the left and its shape space of cross-sections
is shown on the right.

4. Geometric Design of Freeform Tubes

Our goal of the geometric design is to provide users intuitive
and flexible controls of freeform tubular components, which are
modeled using swept surfaces in our system. Similar to previ-
ous works [1], we use boundary constraints to manipulate geo-
metric variation of the cross-section of the tube along the neu-
tral axis instead of using control vertices for the tensor product

spline surfaces, since it is intuitive and requires fewer control
parameters. Instead of profile editing introduced in [1], we em-
ploy the sweep trajectory to control the design in our system, or
namely skeletal control. Comparing to multiple profile curves,
one freeform tube only have one sweep trajectory, which sig-
nificantly eases the overall shape editing operation. Specifical-
ly, as shown in Fig. 3, our system allows users to control 1)
the sweep trajectory S(v), 2) a few key cross-section curves
Ci(u) = C(u,vi) at S(vi), and 3) each key cross-section curve’s
variation at both extensions D−(u,vi) and D+(u,vi), such that
D−(u,vi) and D+(u,vi) are the tangent directions. The output
swept surface C(u,v) at [vi,vi+1] must satisfy the following con-
ditions:

C(u,vi) = Ci(u),
∂C(u,vi)

∂v
=D+(u,vi)

C(u,vi+1) = Ci+1(u),
∂C(u,vi+1)

∂v
=D−(u,vi+1)

You et al. [1] presented a formulation to construct the swep-
t surface with the above constraints by solving a fourth-order
ODEs. Unfortunately, we found that this approach yields un-
pleasant shape distortion if the boundary tangents are not in
parallel, as shown in Fig.4 (a). To prevent such distortion, extra
control information must be provided from the user such as pro-
file control [1] or curvature control [2, 11], which inevitably in-
duces more editing freedoms and could potentially make novice
users confusing.

(a) (b)

Figure 4. Boundary constrained swept surfaces using ODE-based techniques
without (a) and with (b) sweep trajectory control.

Alternatively, we combine the rotation minimizing frames
(RMF) [6] together with the existing ODE-based techniques.
The geometry of the swept surface is decoupled into two part-
s: the shape defined by cross-sections and their 3D embedding
defined by sweep trajectories. In our system, we constrain each
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cross-section curve C(u,vi) to be planar and the editing oper-
ations associated with cross-section curves are performed with
an intuitive 2D user interface. Suppose a rigid transformation
T(v) maps a planar curve C̃(u,v) to C(u,v), we call C̃(u,vt) the
shape of cross-section at v = vt . Given a sparse set of key cross-
section shapes C̃i(u) = C̃(u,vi) for i = 1, · · · ,n and a sweep tra-
jectory S(v), we are computing for interpolated cross-section
shapes C̃(u,v) and transformations T(v) for all vi ∈ [v1,vn]. The
transformation T(v) is composed of a translation t(v) and a ro-
tation R(v). We define the translation t(v) = S(v), to make the
cross-section curves sweep coincide with the specified trajec-
tory S(v). The rotation R(v) is computed by using the RMF
on S(v). Besides interpolatory constraints, we also allow user-
s to control the tangent in the shape space of cross-sections.
Specifically, we embed all planar cross-section shapes in 3D
by defining v as the height (z direction) of C̃(u,v), as shown in
Fig. 3. The tangential controls D̃+(u,vi) and D̃−(u,vi) in the
shape space of cross-sections are also defined in this embed-
ding. C̃(u,v) is solved with the following tangential constraints:

C̃(u,vi) = Ci(u),
∂ C̃(u,vi)

∂v
= D̃+(u,vi)

C̃(u,vi+1) = Ci+1(u),
∂ C̃(u,vi+1)

∂v
= D̃−(u,vi+1).

We take the shape on the plane z = v j as the interpolated cross-
section at v= v j. Note that in our system, D̃−(u,vi) and D̃+(u,vi)
provide only tangential control in the shape space of cross-
sections. They are not the tangents on the swept surface if the
sweep trajectory is not straight. In our implementation, we set
D̃±(u,vi) = R>(v)D±(u,vi), where R(v) is the rotation of the
RMF at v.

As shown in Fig. 4 (b), with the same boundary condition-
s, swept surfaces using our method are free of distortion. In
this example, the sweep trajectory is defined by a cubic Bezi-
er curve whose end points and tangents are the same with the
input boundary conditions. If profile control is still required,
users can simply insert extra key cross-section curves to control
the profile. Note that although existing commercial products
support cross-section sketching followed by sweep path design,
tangential control is mostly applied on the sweep trajectory but
not on the surface. An alternative way is to directly manipulate
on the control points, which leads to heavier data and interac-
tions.

Since the cross-sections are interpolated analytically and
the RMFs are computed explicitly, the computation associat-
ed with editing operations is negligible. Please note that our
current system does not explicitly handle the self-intersection,
which could be possible for highly curved tubes. An alert will
be sent as soon as the user’s editing leads to any self-collisions
or intersections.

5. Formulation of General Shell Element

Shell element is a degenerated structural element. Unlike
regular 3D solid volumetric elements such as brick or tetrahe-
dra, the dimension along its thickness is much smaller (e.g. over

50 times) than the other two dimensions. Such degeneracy leads
serious numerical stability issue. As a result, necessary geomet-
ric/kinematic constraints and simplifications must be assumed.
This section will briefly explain the finite element formulation
of the nine-node quadrilateral shell element. We refer readers
to the related literature [3, 44], for a more detailed derivation.

The parametrization of the swept surface handily generates
a quadrilateral mesh. Each four-node quadrilateral will be con-
verted into a nine-node quadratic shell element. The extra mid-
edge nodes are determined by using cubic Hermite interpolation
so that the resulting nine-node element has smoothly-curved
edges. For the ease of derivation, we adopt the isoparametric
formulation, which begins with a standard shell element (Fig. 5)
defined in a virtual rst coordinate frame or natural coordinate
frame. This element spans from −1 to 1 in both r and s direc-
tions. For elements with arbitrary location and geometry, we
take use of the Jacobian matrix to map it back to the real coor-
dinate system.

ka
t ts s

r
r

node 1node 2

node 3 node 4

node 5

node 6

node 7

node 8node 9

node 4, 4k =

Rest
0l =

l
k kh φ∑

1
2

l l k
k k k k nh a h v φφ +∑ ∑

α
β

Deflected
1l =

l k
nv

1
l kv

2
l kv

Figure 5. A standard nine-node element in natural coordinate frame.

For an arbitrary mass point within the element, all of its
kinematic terms are interpolated using nodal shape functions.
Shape functions always have ones at their host nodes and van-
ished values at the other nodes. High-order shape function can
be considered as the superposition of the scaled low-order ones.
Based on this property, the shape function of this standard ele-
ment can be easily written as:

h1 = 1
4 (1+ r)(1+ s)− 1

2 h5− 1
2 h8− 1

4 h9
h2 = 1

4 (1+ r)(1+ s)− 1
2 h5− 1

2 h6− 1
4 h9

h3 = 1
4 (1+ r)(1+ s)− 1

2 h6− 1
2 h7− 1

4 h9
h4 = 1

4 (1+ r)(1+ s)− 1
2 h7− 1

2 h8− 1
4 h9

h5 = 1
2 (1+ r)(1+ s)− 1

2 h9
h6 = 1

2 (1+ r)(1+ s)− 1
2 h9

h7 = 1
2 (1+ r)(1+ s)− 1

2 h9
h8 = 1

2 (1+ r)(1+ s)− 1
2 h9

h9 = (1− r2)(1− s2).

(1)

Fig. 5 shows a nine-node shell element in the rest (left) and
deflected (right) configurations respectively, indicated with the
superscript l. When l = 0, the corresponding variable is at the
rest configuration; when l = 1, the corresponding variable is at
the deflected configuration. A unit vector lvk

n = [lvk
nx,

lvk
ny,

lvk
nz]
>

is defined in the regular xyz coordinate frame at node k, which
corresponds to the tangent direction of t axis in rst frame. lvk

1
and lvk

2 are two mutually perpendicular unit vectors sitting the
plane normal to lvk

n. The infinitesimal rotations around lvk
1 and

lvk
2 are denoted as α and β , which serve as extra two DOFs of
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node k1. Therefore, each node possesses five DOFs i.e. xk, yk,
zk, αk and βk. Let p(r,s, t) be an arbitrary mass point within the
element. Its rest/deflected position can be interpolated as:

l
φ(r,s, t) = ∑

k
hk

l
φk +

1
2 ∑

k
akhk

lvk
nφ , φ = x,y or z, (2)

where ak is the thickness of the shell at node k. The first ter-
m in Eq. 2 corresponds to the regular shape function interpo-
lation and the second term (i.e. 1

2 ∑akhk
lvk

nφ
) assumes that r

and s displacements at p(r,s, t) are linearly proportional to it-
s t coordinate when r and s are fixed. The displacement vector
u(r,s, t) = [u,v,w]> at p can be interpolated in a similar fashion:

u(r,s, t) = ∑
k

hkuk +
1
2 ∑

k
akhkvk

nx

v(r,s, t) = ∑
k

hkvk +
1
2 ∑

k
akhkvk

ny

w(r,s, t) = ∑
k

hkwk +
1
2 ∑

k
akhkvk

nz

(3)

where vk
nx, vk

ny and vk
nz are the three components of the displace-

ment vector vk
n from 0vk

n to 1vk
n (i.e. vk

n ,
1vk

n− 0vk
n). It can be

expressed using nodal DOFs αk and βk such that:

vk
n =−0vk

2αk +
0vk

1βk. (4)

Substituting Eqs. 3 and 4 into Eq. 2 leads to the final interpola-
tion of the shell element:

 u
v
w

= ∑
k

Hk


uk
vk
wk
αk
βk

 , (5)

where

Hk =

 hk −hk
t
2 ak

0vk
2x hk

t
2 ak

0vk
1x

hk −hk
t
2 ak

0vk
2y hk

t
2 ak

0vk
1y

hk −hk
t
2 ak

0vk
2z hk

t
2 ak

0vk
1z

 . (6)

The element stiffness matrix is in the format of:

Ke =
∫

Ve

B>CBdv, (7)

where B is the strain-displacement matrix obtained by applying
the partial derivative to nodal displacements using Eq. 5. C is
the stress-strain matrix determined by the material property. In
this paper, linear elasticity is assumed and C is constant.

Due to the degeneracy of the shell element along its t di-
rection, the stress components normal to the midsurface must
always be zero. As a result, we need transforms the C matrix
to make it aligned with the orientation of the shell element. As
shown in Fig. 6, let r, s, t be the unit vectors corresponding

1α and β are small because the thickness (t dimension) of the shell is much
smaller than its r and s dimensions.

′s

′r

t

/ ′t t
s

r

s

r

Figure 6. Extracting orthogonal
basis vectors r̄, s̄ and t̄.

to three axes in the natural coor-
dinate frame. They may be dis-
torted and no longer orthogonal
to each other when being viewed
from the regular xyz coordinate
frame. Let r′, s′, t′ be the unit
vectors at the tangent direction-
s of the corresponding axis (note
that t′ = t). We can extract a new
set of basis vectors r̄, s̄ and t̄ such
that: r̄= s′×t′

||s′×t′||2
, s̄= t′×r̄

||t′×r̄||2
, and t̄= t′

||t′||2
. Afterwards, a trans-

formation matrix Qsh ∈R6×6 can be constructed from the direc-
tion cosines of the r̄, s̄ and t̄ measured in xyz coordinate frame,
such that:

Qsh =


l2
1 m2

1 n2
1 l1m1 m1n1 n1l1

l2
2 m2

2 n2
2 l2m2 m2n2 n2l2

l2
3 m2

3 n2
3 l3m3 m3n3 n3l3

ll1,2 mm1,2 nn1,2 lm1,2 mn1,2 nl1,2
ll2,3 mm2,3 nn2,3 lm2,3 mn2,3 nl2,3
ll3,1 mm3,1 nn3,1 lm3,1 mn3,1 nl3,1

 , (8)

where

l1 = cos(x, r̄);
l2 = cos(x, s̄);
l3 = cos(x, t̄);

m1 = cos(y, r̄);
m2 = cos(y, s̄);
m3 = cos(y, t̄);

n1 = cos(z, r̄);
n2 = cos(z, s̄);
n3 = cos(z, t̄).

(9)

The notation abi, j denotes aib j + a jbi, for instance lm1,2 =
l1m2 + l2m1. The transformed C matrix is computed as:

Csh = Q>shCQsh. (10)

The volumetric integral in Eq. 7 is evaluated numerically at 18
sampling points pi(ri,si, ti) according to Gauss-Legendre inte-
gration strategy:

Ke ≈∑
i

det(Ji)wiB>CshB, (11)

where Ji is the Jacobian matrix encoding how rst frame is trans-
formed to xyz frame at pi. wi is the constant sampling weight of
pi. The r, s and t coordinates of pi are selected from the combi-
nations of r =±0.77460,0, s=±0.77460,0 and t =±0.57735.

6. Subspace Simulation Acceleration

We project the FEM simulator into a pre-constructed sub-
space to accelerate the associated computation in order to pro-
vide an interactive design-simulation interplay. It is well-known
that the cost of subspace simulation acceleration is the accura-
cy compromise as the system response beyond the pre-defined
subspace can not be captured. This problem is dealt with by us-
ing a secondary residual subspace, in our system, to accurately
obtain the necessary intra-component deflection due to the ex-
ternal load.
The Choice of Subspace Our subspace construction strategy
is devised based on the following three important observation-
s/assumptions:
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� The entire tube system is composed of multiple small-size
components, many of which are of the same geometry because
of the geometric symmetry.
Accordingly, we compute the subspace basis vectors or modes
at each of the tubular components individually so that the ex-
pensive computation associated with global finite element mesh
is avoided. For tubular components of the same geometry but
different locations/orientations, the modes can be directly syn-
thesized by applying the corresponding rotation and translation.

� Only a static equilibrium structural analysis is required in
our case while vibrational response under highly accelerated
velocity field (e.g. a launching rocket) is not our concern.
Correspondingly, we safely ignore the dynamical structural anal-
ysis and only focus on the static equilibrium analysis with the
format of Ku = f.

� The supporting tubular structure often undertakes a much
larger external regional loads comparing with its self-weight.
Consequently, we build a complementary subspace at run-time
to capture the residual deformation that is not included in the
primary subspace. It can be mathematically proven that such
two-level subspace simulation strategy is able to produce the
same result as using the full-space2.

6.1. Constraint Subspace – the Primary Subspace

Our primary subspace construction method is inspired by
the boundary mode [45], which is essentially an extension of
the classic CMS technique [43]. The basis vectors are comput-
ed per component by solving a static equilibrium system. For
a given tubular component, we classify all of its DOFs into t-
wo categories namely, the internal DOF set and boundary DOF
set, which are denoted using subscripts i and b respectively in
the following formulation. We impose one unit displacement
to each boundary DOF while restrain the rest boundary DOFs
anchored, which leads to:[

KL
ii KL

ib

KL
ib
> KL

bb

][
ΦL

i
ΦL

b

]
=

[
FL

i
FL

b

]
, (12)

where superscript L denotes the variables are local. ΦL
b is an

identity matrix corresponding to the unit boundary excitement
imposed. FL

i = 0 as no external loads are applied at internal
DOFs. The unknown internal response ΦL

i can be easily com-
puted by expanding the first line of Eq. 12:

Φ
L
i =−KL

ii
−1KL

ib, (13)

and mode vectors at the component are assembled by concate-
nating the ΦL

i and ΦL
b such that ΦL = [ΦL

i
>|ΦL

b
>
]>. We no-

tice that the formulation of ΦL is consistent with the constraint

2In fact, even if the the structure’s self-weight is not neglectable, we can
further incorporate the inertia-relief mode set (extra six modes per componen-
t) to make the local primary subspace a statically complete mode set, which
is able to accurately capture the static system response due to the rigid body
acceleration as proven in [42].

mode in CMS [42]. Therefore, we refer the subspace spanned
by ΦL as the constraint subspace. Fig. 7 shows the shapes of
five constraint modes associated with a boundary node while
other boundary nodes (red nodes in the figure) are fixed.

Figure 7. The shapes of five constraint modes associated with a boundary node
(highlighted as blue node). Other restrained boundary DOFs are marked as red
nodes.

With constraint modes, the system’s displacement can be
expressed using the reduced coordinates at each componen-
t such that:

u = Φ̄q̄, (14)

where Φ̄ = diag(Φ1,Φ2, ...Φk) and q̄ = [q1>,q2>, ...qk>, ] are
the global subspace matrix and generalized displacement vector
of the system with k tubular components.

Figure 8. An illustrative example showing the coupling of tubular components
η and ζ assuming that an appropriate boundary condition has been specified at
the highlighted nodes.

6.2. Multiplier-Free Component Coupling

All the tubular components are mutually connected at their
interfaces. Such coupling can be formulated as the interface
constraint (IC) between a pair of adjacency components. As
shown in Fig. 8, IC requires that duplicated boundary DOFs
from components η and ζ must always have identical values
e.g. uη

b = uζ

b . It can be re-written using the reduced coordinate
in constraint subspace:

Eη

b Φ
η qη = Eζ

b Φ
ζ qζ , (15)

where Eη

b and Eζ

b are two elementary matrices extracting bound-
ary DOFs from each component. A commonly-adopted ap-
proach to enforce Eq. 15 is to use the Lagrange Multiplier method,
which explicitly formulates the interface forces as the unknown
multipliers [41]. While our simulator can also be handled this
way, there are two obvious drawbacks associated with multiplier-
based solution: 1) the dimension of the resulting linear system
is greatly increased due to the existence of the multipliers and

6



/ Graphics Models 00 (2015) 1–12 7

the redundancy of the boundary DOFs and 2) the system matrix
is no longer a symmetric positive definite (SPD) matrix as we
have vanished diagonal elements at locations corresponding to
the IC. Consequently, the effectiveness of subspace acceleration
is compromised.

Alternatively, we enforce the interface constraint without
replying on the Lagrange Multiplier method to maintain a more
compact and better-conditioned subspace solver. Note that ICs
are a set of linear constraints, which can be re-written as:

Cq̄ = 0, (16)

where q̄= [qη>,qζ
>
]> and C= [Eη

b Φη |−Eζ

b Φζ ] as in the case
shown in Fig. 8. C ∈ Rc×d is a rectangular matrix, where c is
the number of ICs of the system and d is the total number of
the reduced coordinates at components η and ζ including the
duplicated interface DOFs. Obviously, d > c, therefore C can
be further split into two parts:

C = [C1|C2], (17)

such that C1 ∈ Rc×c is a full-rank square matrix. Eq. 16 can be
re-written as:

C1qd +C2q f = 0, (18)

where q f represents a subset of q̄ consisting of only indepen-
dent or free DOFs and qd represents a subset of dependent D-
OFs. In the example shown in Fig. 8, if the DOFs on the red
interface are free DOFs, the DOFs on the green interface are
dependent ones and vice versa.

Since C1 is full-rank, we can use q f to represent the other
“redundant” DOFs qd :

qd =−C−1
1 C2q f , (19)

as well as the complete q̄ vector:

q̄ =

[
q f
qd

]
=

[
I

−C−1
1 C2

]
q f . (20)

Substituting Eq. 20 into Eq. 14 yields

u = Φ̄

[
I

−C−1
1 C2

]
q f = Φq, (21)

where Φ, Φ̄

[
I

−C−1
1 C2

]
and q, q f . The full-space equilib-

rium Ku = f3 can be directly projected onto the new subspace
spanned by Φ where IC is implicitly encoded:

Kqq = fq. (22)

Here, Kq = Φ>KΦ and fq = Φ>f. This derivation can be easily
extended for multiple components.

3Note that here K is a diagonal block sparse matrix, each diagonal block is
the component’s local stiffness matrix.

6.3. Residual Subspace – the Secondary Subspace

Using constraint modes is able to significantly improve the
performance, yet it also sacrifices the accuracy of the simula-
tion. Tubular supporting structure is often exerted concentrat-
ed regional loads of large magnitude. While the deflections at
load-free components are accurately captured (when the gravi-
ty effect can be ignored) because all the inter-component stress
propagations are losslessly passed via the interface whose D-
OFs are fully preserved within constraint subspace, deflection
at the loading components where the forces are applied is not
able to be well represented with constraint modes. To resolve
this issue, a local secondary subspace is built to capture the
residual deflection and improve the simulation accuracy at load-
ing components, which is detailed in this subsection. As all the
formulation is for a certain loading component, the superscript
L is omitted.

Figure 9. The shapes of five residual modes associated with an exciting node
(green).

We denote all the internal DOFs undertaking the external
loads as the exciting DOFs while all the other internal DOFs as
passive DOFs. They are symbolized using subscripts e and p
respectively. Similar to constraint mode, a unit displacement is
imposed to the each of the exciting DOF while keep other excit-
ing DOFs and boundary DOFs fixed. We restrain the boundary
DOFs so that the complementary deflection computed will not
affect the status of other load-free components. A equilibrium
system can be listed accordingly: Kee Kep Keb

Kep
> Kpp Kpb

Keb
> Kpb

> Kbb

 Ψe
Ψp
Ψb

=

 Fe
Fp
Fb

 , (23)

where Ψe = I and Ψb = 0 correspond to the imposed unit dis-
placement at exciting DOFs and anchored boundary DOFs. Fp =
0 as no forces are applied at the passive DOFs. Again, the su-
perscript L indicating the local variables is omitted here. The
unknown system response at passive DOFs can be computed
by expanding the second line of Eq. 23:

Ψp =−K−1
pp K>ep. (24)

We use span(Ψ) to represent the subspace spanned by Ψ, and
name it as the residual subspace whose basis vectors are resid-
ual modes. Fig. 9 shows the shapes of five residual modes as-
sociated with an internal exciting node.
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The residual modes are employed based on the fact that the
response of a linear system of a composite input is equivalent to
the superposition of the system’s responses with respect to each
individual input. In fact, it can be proven that the superset of
Φ and Ψ is able to completely capture the deflection at loading
components. We refer readers to Appendix A for mathematical
proof details.

In other words, it means that an accurate result will be ob-
tained if the system is solved within span(Φ)∪ span(Ψ):[

Φ>

Ψ>

]
K[Φ|Ψ]

[
q
p

]
=

[
Φ>f
Ψ>f

]
,

or [
KΦΦ KΦΨ

KΨΦ KΨΨ

][
q
p

]
=

[
fΦ

fΨ

]
, (25)

where 
KΦΦ = Φ>KΦ

KΦΨ = Φ>KΨ

KΨΦ = Ψ>KΦ

KΨΨ = Ψ>KΨ

. (26)

Here, q and p are the reduced coordinates of constraint modes
and residual modes. While Φ can be pre-computed for each
component, Ψ is a load-dependent matrix as different exter-
nal loads would specify different exciting DOF sets and there-
fore, yield different mode matrices. It implies that as soon as
the external loads are changed, the entire system must be re-
computed, which significantly downgrades the useability of the
system.

We notice that if the off-diagonal blocks (e.g. KΦΨ and
K>

ΦΨ
) in Eq. 25 are zero, the constraint subspace and residual

subspace will be decoupled and the computation of q and p are
isolated. Therefore, we apply the modified Gram-Schmidt pro-
cess (MGS) [46] towards Ψ with respect to KΦ, which yields a
new set of residual modes Ψ̃ such that Ψ̃⊥KΦ or (KΦ)>Ψ̃= 0.
Boundary DOFs are always fixed during the computation of
Ψ. On the contrary, there always exists one non-zero bound-
ary DOF in the constraint mode. Such properties of constraint
modes and residual modes guarantee that span(Φ)∩span(Ψ)=
∅. Therefore, span(Ψ) = span(Ψ̃) and span(Φ)∪ span(Ψ) =
span(Φ)∪ span(Ψ̃). Substituting Ψ with Ψ̃, Eq. 25 is simpli-
fied to: {

KΦΦq = fΦ

K
Ψ̃Ψ̃

p = f
Ψ̃
.

(27)

The final component deflection is computed using

u = [Φ|Ψ̃][q>|p>]>
= Φq+Ψp
, uΦ +u

Ψ̃
.

(28)

Note that uΦ is the constraint subspace displacement. There-
fore, we only need to calculate an incremental displacement u

Ψ̃

in order to obtain the exact full-space result at loading compo-
nents. Fig. 10 summarizes the major computational procedures
in our system.

7. Experimental Results

We report and discuss experiments we have conducted in
this section. Please refer to the accompanying video for more
results including the test use of the fabricated tubular models.

7.1. Hardware & Software Platform

Our experiments are carried out on a Dell Optiplex 9010
workstation computer equipped with an Intel i7-3770, 3.40 Ghz
CPU and 16G memory. The proposed system is implemented
on 64-bit Microsoft Windows 7 using Visual Studio 2010. We
use Eigen numerical library [47] for most linear system relat-
ed calculations. Note that we only use the single-core imple-
mentation however, many computations (e.g. per-component
subspace construction) can be trivially parallelized using multi-
threading.

7.2. Four-node Element vs. Nine-node Element

Existing FEM literatures [3, 44] have mentioned that linear
four-node element is not a good choice for general shell simu-
lation. It is partially because the governing stress equilibrium is
characterized using a second-order partial differential equation.
The adoption of weak form (well-known as virtual work princi-
ple in the context of continuum mechanics) allows the usage of
linear interpolation functions (e.g. linear element) however, the
accuracy of the simulation is compromised. The adoption of
the linear element also leads to the shear locking artifact, which
is shown in Fig. 11. The regular cylinder-shaped tube is simu-
lated using the same number of four-node shell elements (left)
and nine-node shell elements (right), respectively. The exter-
nal forces are applied at the highlighted nodes in the positive y
direction. The bending deformation can be well observed with
nine-node element which is however, “locked” with four-node
element.

Figure 11. Shear locking using linear four-node element (left) which eliminates
the bending deflection while quadratic nine-node element (right) does not have
such artifact.

7.3. User Interface & Implementation Details

Fig. 12 shows a screen capture of the user interface of the
proposed design-simulation system. Right to the main 3D view,
our system provides an intuitive interface for the user to specify
the boundary (top) and skeletal (bottom) controls of tube com-
ponents. Our system maintains a tube library shown blew the
main 3D view. The geometry of each tube component can be
freely edited. Immediately after the geometric edit of a compo-
nent is committed, the updated component will be inserted into

8
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Tubular  component 
edi ting

Assemble sti f fness 
matr ix

Visualize von-Mises 
str ess distr ibution

Compute constr aint 
mode (Eq.12)

Update global mode 
matr ix 

Speci fy external loads

Residual deflectionPer form MGS Compute r esidual mode 
(Eq.23)

Pr imar y subspace 
deflection 

Figure 10. Overall computational procedures of the two-level subspace simulation method.

the library as a new component. All the related pre-computation
is also carried out at this stage. On average, a tube component
holds about 4,000 to 7,000 DOFs. The related computation-
s like assembling the stiffness matrix K, computing the con-
straint modes Φ as well as calculating the matrix-vector prod-
uct of KΦ, which is for the potential MGS to be applied if this
component is a loading component, can be done in real-time.
During the model assemblage, each component can be freely
copied and pasted. User is also able to specify the geometric
symmetry during the editing so that the shape edits applied at
a component will be automatically mapped to its geometrically
symmetric counterparts like the stool legs shown in Fig. 2.

Figure 12. The user interface of the proposed system.

As soon as the entire structure is assembled, we need to
build the global Φ matrix (Eq. 21) as the primary subspace ba-
sis vectors. Therefore matrices C1 and C2 (Eq. 17) must be
identified. They can be efficiently found as each column in the
original C matrix corresponds to a system DOF while all the
row vectors in C are guaranteed to be linearly independent (as
long as the IC are not redundantly defined in C). Therefore, we
only need to construct another elementary matrix encoding the
necessary column permutation to move all the columns corre-
sponding to independent DOFs to the left-end of the matrix. As
long as the topology of the tubular structure is not altered, this
elementary matrix remains the same.

After the displacement is computed. The strain vector ε ∈
R6×1 can be easily evaluated using the strain-displacement ma-

trix B, which is further converted to the stress vector σ accord-
ing to the assumed linear elasticity: σ = Cε . Finally, we vi-
sualize the von Mises stress using the GLSL shader. The von
Mises stress is a scalar and can be computed as:

σ
2
von =

σ2
1,2 +σ2

2,3 +σ2
3,1 +6(σ2

12 +σ2
23 +σ2

31)

2
, (29)

where σi, j = σii−σ j j and σi j is the i, j component in the tensor
representation of σ . We simulate the tubular structure of stere-
olithography (SLA) material with Young Modulus of 2.5e9 and
Poisson Ration of 0.41. Regions with high von Mises stress
are likely to fail under the prescirbed external loads as shown in
Fig. 14.

Figure 14. The 3D printed lamp stand
fails and the failure location matches
the area where high stress distribution
is observed.

Fig. 13 shows the snap-
shots of using our system
for designing and simulat-
ing various tubular struc-
tures. Since authors are
not professional designer-
s, we just follow some de-
sign ideas searched from
internet shown in the left-
most column of the fig-
ure. When high-stress re-
gions is observed, we ap-
ply some further geometric
edits to the model includ-
ing altering the shapes of
the cross-sections at criti-
cal region (row 1, the lamp
stand model), reducing the
curvature connecting neighbor components (row 2, the laptop
holder model), adding extra supporting components (row 3, the
bookshelf model) and reducing the force moment (row 4, the
camera rack model). The edited regions are highlighted in the
rightmost column in the figure.

7.4. Time Performance
Tab. 1 reports the detailed statistic of the 3D models we

have tested. We compare the time performance of the proposed
two-level subspace simulation method with the full-space sim-
ulation as well as the subspace simulator using the Lagrange
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Image source:
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Figure 13. Snapshots of using the proposed design-simulation system.

multiplier method. While the full-space system can be solved
using the sparse Cholesky solver (the built-in SimplicialLLT

routine in Eigen library), the simulation is not interactive along
with the design operations with lags of seconds. On the other
hand, the multiplier based subspace solver often has doubled or
tripled size comparing with our method, due to the dulcification
of the boundary DOFs as well as the explicit formulation of un-
known multipliers. In addition, the resulting system matrix is
no longer SPD either and can not be handled with LLT decom-
position. Therefore, the performance data listed in Tab. 1 is the
one using the LU decomposition (the built-in PartialPivLU

solver in Eigen library), which is slower than LLT decomposi-
tion in most cases. As a result, even with much fewer DOFs,
Lagrange multiplier based subspace solver could be even slow-
er than the full-space solver.

The proposed multiplier-free coupling mechanism will have
a dense SPD matrix of much smaller size. Therefore, it is much
more efficient than the above-mentioned two solvers. For 3D
models with over 100k full-space DOFs, our method is still able

to perform the accurate structural analysis at an interactive rate.
We would like to remind the reader that unlike most existing
subspace model reduction methods, our method does not com-
promise simulation accuracy while making the simulation an
order of magnitude faster. Extra computations are required for
applying the MGS, constructing the residual subspace and solv-
ing the secondary deflection. However, such computations are
light-weight as they are conducted at the component level. In
most cases, they can be finished within milliseconds.

8. Conclusion and Limitation

In this paper, we present a system for design and simulation
of tubular supporting structure. Besides an intuitive shape con-
trol mechanism, our system is able to interactively perform the
structural analysis using a two-level subspace FEM simulation.
We show the interactive and accurate design and simulation of
large 3D model of over 100k DOFs. However, there still exist
several limitations in the current version of the system. First

10
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Model #Ele. #Nodes #DOFs S(L)DOFs SDOFs FT (s) S(L)T (s) ST (s) #Com.
Lamp stand 5,184 5,216 25,920 1,120 480 0.406 0.093 0.01 3
Stool legs 6,456 25,946 129,090 5,160 2,040 2.108 7.278 0.633 14
Bookshelf 25,824 19,547 97,750 5,120 2080 1.532 6.96 0.66 11

Bookshelf edited 25,280 22,942 114,710 5,760 1,920 1.861 9.484 0.51 13
Camera rack 22,400 22,170 110,850 4,920 2040 2.060 6.301 0.62 13

Laptop holder 12,096 12,128 60,480 3,040 1,120 0.784 1.472 0.103 7

Table 1. Time performance of our method, full-space simulator as well as subspace simulator using Lagrange Multiplier method. #Ele.: the number of elements;
#Nodes: the number of free nodes; #DOFs: the number of full-space DOFs: #S(L)DOFs the size of the simulator using constraint mode and Lagrange Multiplier
method; SDOFs: the size of the simulator using the propose multiplier-free coupling method; FT: time used to solve the system in full-space; S(L)T: time used to
solve the multiplier-based subspace system; ST: time for our method; #Com: the number of the tube components.

of all, our design system is only able to handle simple tubular
components with two open interfaces. More complex tubes of
T-shape or Y-shape are not able to be intuitively edited. A pos-
sible solution is to deform a template with boundary control by
solving higher-order harmonic equations. As a future work, we
will study how to use fundamental solutions to accelerate the
geometric design of multi-interface tube components. During
the shape editing, self-intersection could occur at highly curved
regions. However, our current system cannot automatically fix
such problem and it only sends out an alert to the user. Feature
modeling is not supported in our system. Different domain de-
composition strategies are required to accelerate the simulation
if features are added to tubular structures, which gives another
direction of our future work. In the simulation part, we ignore
the deflection induced by component’s self-weight, which could
also induce simulation inaccuracy when the tubular component
is fabricated using material of high density. We plan to incor-
porate the inertia-relief modes [42] to fully accommodate the
gravity effect to the system in the future. Another interest fu-
ture direction is to make simulation active meaning the simula-
tor will provide the user potential solutions to fix a “faulty” ge-
ometric edit as in many recent design-simulation systems [26].
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Appendix A.

Proof. We show that the subspace component deflection com-
puted using Eq. 25 is identical to the solution of the full-space

equilibrium (e.g. Ku = f). Noticing that for a loading compo-
nent, external forces are only applied to the exciting DOFs and
the corresponding component equilibrium becomes: Kee Kep Keb

Kep
> Kpp Kpb

Keb
> Kpb

> Kbb

 ue
up
ub

=

 fe
0p
fb

 . (A.1)

Expanding the second line of Eq. A.1 yields:

up =−K−1
pp K>epue−K−1

pp Kpbub. (A.2)

Similarly, we also expand the equilibrium of the passive DOFs
through the definition of constraint mode and residual mode
(e.g. Eqs. 12 and 23), which gives:

K>epΦe +KppΦp +KpbIb = 0, (A.3)

and
KppΨp +K>ep = 0. (A.4)

By substituting Eqs. A.3 and A.4 into Eq. A.2, we obtain:

up = Ψpue +(Φp−ΨpΦe)ub,

which leads to: ue
up
ub

=

 Φe Ψe
Φp Ψp
Ib Ψb

[ ub
ue−Φeub

]
= [Φ|Ψ]

[
q
p

]
.
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