
Online Submission ID: 105

Fast Image Segmentation on Mobile Phone using Multi-level Graph Cut
Category: Research

Figure 1: Our method is an interactive foreground segmentation system consisting of four steps: A pre-segmentation step, and object marking
step, an initial Graph Cut step, and a boundary refinement step. In (a), our target image. In (b), the Superpixels algorithm is performed on a
downsampled version of our input image. In (c), the user marks the foreground and background of the image. In (d), a graph cut is performed
on the pre-segmented image using marks made by the user. In (e), the resulting foreground segmentation is upsampled to the original input
image’s resolution and the boundary is approximated by editable Bezier curves. A local graph cut is performed on a per-pixel basis in a
dilated regions around each curve. In (f), the final segmentation.

ABSTRACT

This paper presents a system for an efficient image segmentation on
mobile phones using multi-level graph cut. As the computational
capacity of mobile devices is often limited, a fluent and smooth im-
age segmentation is a challenging task with existing segmentation
algorithms, increased in difficulty by mobile phone cameras con-
tinually upgraded to take photos of higher resolution. Our solution
is to carefully tweak the classic graph cut algorithm for an inter-
active image cutout, enhancing the performance without compro-
mising the quality of the segmentation. This is achieved by down-
sampling the original high-resolution image and selecting a rough
cutout region on this low-resolution image with a superpixel based
pre-segmentation. The segmented foreground is then mapped back
to the full-size image and the image undergoes an adaptive bound-
ary refinement. This second segmentation performs the optimiza-
tion locally and can be accomplished within milliseconds. We test
our system on an Apple iPhone 6 and our experiments show that a
high quality segmentation can be achieved in a lag-free manner on
the mobile phone even for multi-megapixel images.

Index Terms: I.3.3 [Computer Graphics]: Methodology
and Techniques—Interaction Techniques; I.4.6 [Image Process-
ing and Computer Vision]: Segmentation—Pixel Classifica-
tion;Partitioning

1 INTRODUCTION

Image segmentation is a pixel labeling technique that categorizes
image pixels into two regions: a foreground and a background.
The foreground typically, is associated with objects of interest (e.g,
the portrait of a person) similar to using Magnetic Lasso in Adobe
Photoshop R©. A high quality segmentation is desired in many prob-
lems in computer vision, image processing as well as computer
graphics such as face recognition, image synthesis [15] and so on.
The task of manually specifying the foreground and background of
an image, is a tedious process that becomes all the more laborious
as image resolutions increase and constraints are placed on user in-
teraction such as performing the process on a mobile device.

The rapid ubiquity of mobile hardware has led the portable cam-
era phone to become the dominate approach for image acquisition
and sharing. The state-of-the-art cameras equipped on mobile de-
vices are able to take pictures at multi-megapixel resolutions. How-
ever, existing image segmentation algorithms/interfaces are mostly
designed for desktop PCs with the assumption of a high-frequency
CPU, sufficient on-board memory, and precise user inputs (i.e., us-
ing mouse). Naively porting these algorithms [5, 18, 25] to a mobile
phone does not yield a responsive and usable experience.

Our challenges are twofold. First, although we have witnessed a
significant performance boost in embedded hardware recently, solv-
ing the complex optimization problem associated with the segmen-
tation of an HD image is still challenging for mobile devices taking
dozens of seconds or even minutes. Secondly, the touch screen of
the phone is much smaller than the display of a conventional desk-
top PC. The input method is much less precise via touch screen
and obscures the view of the screen. From a human-computer in-
teraction standpoint, we must design an interface which allows for
effective control of the segmentation.

Motivated by aforementioned challenges, we present a segmen-
tation interface specially tuned for mobile devices. The most time-
consuming computation, associated with global gibbs energy opti-
mization, is carried out on a downsampled low-resolution snapshot
image with a two-level graph cut. Then the segmented foreground
is mapped back to the original image and followed by an adap-
tive boundary refinement. Users only need to provide a couple of
strokes on the screen and our method automatically produces satis-
factory segmentation even for objects with fuzzy boundaries.

2 RELATED WORK

Image segmentation has long been considered a fundamental task
in many areas. Segmentation algorithms extract some features of
an image (such as color similarity) and formulate them into an opti-
mization problem: defining a foreground region that is sufficiently
different from the rest of the image while enforcing that the color
pattern of the foreground is consistent.

Boundary-based selection methods such as Active Contour Mod-

1

Online Submission ID: 105

els (Snakes) [14] and Intelligent Scissors [19] allow users to define
the boundary of the image foreground with an energy-minimizing s-
pline curve. Unfortunately when the boundary is complicated or the
object is in a highly-textured region, the user may need to perform
many iterations in order to successfully obtain a satisfactory seg-
mentation. The boundary-based approach is difficult to implement
on mobile devices because unique user interface problems arise due
to the precision required to specify detailed boundary regions.

Adaptive painting techniques, such as Paint Selection [18], In-
telligent Paint [22], Bilateral Grid [8], and Edge Respecting Brush-
es [21] use a progressive painting-based tool for local selection in
images. Instead of solving the global optimization problem, adap-
tive painting algorithms incrementally solve a set of local optimiza-
tion problems defined by the users’ interaction. The adaptive paint-
ing approach updates and displays the current foreground segmen-
tation in real-time and displays no extraneous marks on the image.
The Paint Selection algorithm has also been shown to handle high-
resolution (multi-megapixel) images at interactive rates.

Scribble-based selection [5, 13, 20, 25] requires less user input.
The segmentation is computed based on a few foreground and back-
ground “scribbles” specified by users at the beginning as the initial
constraint. Graph cut [5] is a widely-adopted method for this divi-
sion, derived from max-flow min-cut with the proven effectiveness.
However, this algorithm is computationally intensive when high-
resolution images are to be processed, resulting in unacceptable
computation times on mobile devices. Maximal similarity region
merging (MSRM) [20] automatically merges superpixels that are
initially generated via mean shift segmentation and then constructs
the foreground object boundary by labelling all non-marked super-
pixels as belonging to the foreground or background. Semisuper-
vised kernel matrix learning has been applied to interactive image
segmentation via kernel propagation (KP) [13]. Utilizing kernel
propagation a small seed-kernel matrix is generated from the user-
s input which is propagated into a full-kernel matrix of the target
image. Foreground segmentation occurs during the kernel propaga-
tion.

Recently there have been many proposed image segmentation
methods that are explicitly targeting mobile platforms. Discrimina-
tive clustering [10] uses a simplified graph-cut-like method, which
can significantly accelerate the speed of the segmentation. The core
idea here is to split the gibbs energy minimization into two sep-
arate steps. With this simplification each minimization becomes
a much smaller polynomial problem. BCRW algorithm [12] inte-
grates a Bayesian classifier into the random walk optimizer. Us-
er input trains a Bayesian classifier which determinines the edge
weights and input labels in the random walk optimizer for image
segmentation. The object class segmentation [11] algorithm target-
s tablets by combining a superpixel pre-segmentation with Grab-
Cut to generate an initial solution and then allows the user to refine
the selection by manually marking background superpixels. Liu et
al. [?] merge over-segmented image regions according to the max-
imal similarity rule and then refine ambiguous boundary regions
automatically using local and global information. The superpixel
grouping method [3] begins with a superpixel over-segmentation
and after the user marks the foreground and background the algo-
rithm iteratively merges superpixels based on their color histogram-
s. Unlike other methods that specifically target the mobile platfor-
m, our method aims to achieves interactive image segmentations
on multi-megapixel images which are now commonplace on todays
mobile devices. Unlike other methods that specifically target the
mobile platform, our method achieves interactive rates while pro-
ducing high quality segmentation results on multi-megapixel im-
ages. Our method, with its secondary refinement step also requires
a minimum of user-input to achieve pleasing results; something that
important when targeting the mobile platform.

Table 1: Comparative image segmentation benchmarks (in second-
s): GC: graph cut; LS: lazy snapping; GbC: grabcut

Image Resolution GC Ours LS GbC
Bill.jpg (1200x1600) 10.81 0.49 4.31 2.87
Qin.jpg (1156x1600) 4.95 0.5 8.42 6.42

Grandpa.jpg (1200x1600) 5.37 0.53 8.77 9.26
Elephant.jpg (1067x1600) 2.92 0.44 4.81 7.21

Pravi.jpg (1071x1600) 5.71 0.55 4.31 4.87

3 INTERFACE OVERVIEW

Our method builds upon the classic graph cut algorithm [4] at vari-
ous levels-of-detail of the image. Figure 1 outlines each individual
step of our segmentation interface. First, we create a image pyramid
from the target image which is a set of lowpass copies of our image
where each at each level of the pyramid the image resolutions is de-
creased by factor of s [2]. Pre-segmentation is then performed on a
reduced resolution level of our image pyramid using the SLIC Su-
perpixels algorithm [1]. Then, the user provided scribbles to seed
the foreground and then the background of the image. Based on
the user’s input the first graph cut is performed to produce a rough
segmentation on the image which is now comprised of superpixel-
s. The result of this two-level graph cut is then upsampled to the
original image resolution.The boundary obtained through the pre-
segmented graph cut is then approximated using quadratic Bezi-
er curves. If necessary, this allows the user to adjust the current
boundary in order to improve results of the final refinement step.
The final boundary refinement is a secondary per-pixel graph cut in
a dilated region around each bezier curve that comprises the curren-
t boundary. Neighboring dilated regions are always overlapped so
that the updated boundary is continuous across dilated regions.

4 PRE-SEGMENTATION

(a) (b) (c) (d)

Figure 3: An image pre-segmented using SLIC superpixels with
varying number of superpixels specified. (a) The original image.
Image segmented into (b) 100, (c) 1000, and (d) 10,000 superpixels.

With recent advances mobile phone technology it is not uncom-
mon for a smartphone camera to be capable of taking images of
high resolution (e.g. the latest iPhone has an eight megapixel back-
facing camera). In order to create an interactive foreground seg-
mentation algorithm that can process images of this magnitude we
pre-segment our target image using the SLIC Superpixels algorithm
[1]. Pre-segmentation is a strategy that is adopted by many existing
contributions [3, 10, 11, 17, 25].

Watershed Algorithm - In the lazy snapping [25] algorithm a
pre-computed over-segmentation is performed which uses the wa-
tershed algorithm [16]. The watershed algorithm is relatively effi-
cient with a complexity of O(N logN) but does not allow the user to
define the number of watersheds or their density. In addition the su-

2

Online Submission ID: 105

(a) (b) (c) (d)

Figure 2: A comparison of pre-segmentation methods. The resulting segmentation is colored using the average pixel color in each superpixel:
In (a), we see the high frequency details that are found in the original image. In (b), the results of performing pre-segmentation using the
watershed algorithm. In (c), the results of performing pre-segmentation with the Quick Shift algorithm. In (d), the results of performing
pre-segmentation with the SLIC superpixels algorithm.

 Image Resolution

720x480

1280x720

1920x1080

2560x1600

3264x2448

 S
e
c
o

n
d

s

0

10

20

30

40

50

60

70

80
Segmentation Speed

Watershed

Quick Shift

SLIC

Figure 4: Time required to generate segment an image for images
of increasing resolution.

perpixels generated by the watershed algorithm are highly irregular
with poor boundary adherence.

Mean/Quick Shift - In the discriminative clustering [10] and
KP-Cut [13] algorithms pre-segmentation is performed using the
mean shift algorithm [9]. The complexity of mean shift is O(N2)
and thus is not suitable for large images or implementation on a
mobile device that supports large resolutions[1]. The more recen-
t quick shift is even slower than mean shift with a complexity of
O(dN2) where d is a small constant [24]. Like the mean shift algo-
rithm, there is no explicit control over the amount or compactness
of the resulting superpixels.

SLIC Superpixels - Similar to the object class segmenta-
tion algorithm [11] our method also relies upon an initial pre-
segmentation pass of the target image using the simple linear it-
erative clustering (SLIC) Superpixels algorithm [1]. The SLIC
Superpixels algorithm adapts a k-means clustering approach to seg-
ment an image and has multiple advantages over the other afore-
mentioned gradient-decent-based algorithms. First, as figure 4 il-
lustrates the SLIC Superpixels algorithm is more efficient than the

other methods in our benchmark. The complexity of the SLIC Su-
perpixels algorithm at O(N) is significantly faster than the Water-
shed and Quick Shift algorithms with complexities of O(N logN)
and O(N2), respectively. Second, as demonstrated in figure 3 the S-
LIC Superpixels algorithm allows the user to explicitly define both
the number of and compactness of the resulting superpixels which
allows for a uniform time required to calculate the graph cut solu-
tion regardless of the image dimensions. Third, the SLIC Superpix-
els method’s most important property in regards to image segmen-
tation is its adherance to image boundaries. As shown in figure 2
the segmentation obtained using the watershed and quick shift al-
gorithms is highly irregular and does not preserve boundary detail
as well as the SLIC Superpixels approach for the object with fuzzy
boundary. Finally, the SLIC superpixel algorithm is trivial to imple-
ment in parallel which allows us to achieve an decrease in the time
required for superpixel calculation in proportion to the number of
cores on our mobile device.

5 MULTI-LEVEL GRAPH CUT

As shown in figure. 6, we process the image segmentation at three
different levels: the original HD image, the downsampled snap-
shot image and the pre-segmented downsampled image. The in-
formation of the segmentation at different level will be shared at
various levels, which is similar to the famous multigrid numer-
ical solver [7]. However, at each level we do not solve a lin-
ear/nonlienar system, instead a graph-cut based energy optimiza-
tion is performed. This section details the procedures of the pro-
posed multi-level graph cut method.

5.1 Image Pyramid
While the SLIC Superpixels algorithm is very efficient, the time
required to generate a superpixel segmentation of multi-megapixel
images it is unacceptable for an interactive application. For this rea-
son, before performing the pre-segmentation step of our method we
first generate an image pyramid from our target image. The image
pyramid is a hierarchical data structure that supports efficient scaled
convolution via reduced image representation. The data structure is
a hierarchy of images where each successive level contains a copy
of the original image in which the resolution is decreased at regular

3

Online Submission ID: 105

G
raph C

ut

 O
ur M

ethod

Lazy Snapping

G
rabcut

 S
e
c
o

n
d

s

0

2

4

6

8

10

12

10.81

0.49

4.31

2.87

Cat Wearing Sweater

G
raph C

ut

 O
ur M

ethod

Lazy Snapping

G
rabcut

0

2

4

6

8

10

12

4.95

0.5

8.42

6.42

Qin Clay Soldier

G
raph C

ut

 O
ur M

ethod

Lazy Snapping

G
rabcut

0

2

4

6

8

10

12

5.37

0.53

8.77

9.26

Joe Garcia

G
raph C

ut

 O
ur M

ethod

Lazy Snapping

G
rabcut

0

2

4

6

8

10

12

2.92

0.44

4.81

7.21

African Elephant

G
raph C

ut

 O
ur M

ethod

Lazy Snapping

G
rabcut

0

2

4

6

8

10

12

5.71

0.55

4.31

4.87

Pravallika Wedding

Pre-Segmentation

Foreground Segmentation

Boundary Refinement

G
raph C

ut

 O
ur M

ethod

Lazy Snapping

G
rabcut

 T
ru

e
 P

o
s
it

iv
e
 R

a
te

 (
T

P
R

)

90

91

92

93

94

95

96

97

98

99

100

98.08

98.5
98.15

97.19

G
raph C

ut

 O
ur M

ethod

Lazy Snapping

G
rabcut

90

91

92

93

94

95

96

97

98

99

100 99.65

97.59 97.61

95.73

G
raph C

ut

 O
ur M

ethod

Lazy Snapping

G
rabcut

90

91

92

93

94

95

96

97

98

99

100

98.55
98.21 98.11

93.07

G
raph C

ut

 O
ur M

ethod

Lazy Snapping

G
rabcut

90

91

92

93

94

95

96

97

98

99

100 99.76
99.48

98.93

96.73

G
raph C

ut

 O
ur M

ethod

Lazy Snapping

G
rabcut

90

91

92

93

94

95

96

97

98

99

100

96.81

96.03 95.98

92.79

Figure 5: Performance comparison and true positive rate (TPR) of different image segmentation algorithms.

intervals. The original image comprises the bottom level our our
pyramid, G0. The original image is then low-pass-filtered and sub-
sampled by a factor of two to obtain the next level, G1. This process
of filtering and subsampling is repeated until the desired number of
pyramid levels have been generated [2]. To generate the lth level
(0 < l < N) of our N level pyramid we have:

Gl(i, j)∑
m

∑
n

w(m,n)Gl−1(2i+m,2 j+n), (1)

where the weighting function w(m,n) is a small separable generat-
ing kernel [2].

(a)

(b)

(c)

Figure 6: Multiresolution graph cut: (a) Downsample target image.
(b) Graph cut is performed a reduced level of our image pyramid.
(c) Map solution to original resolution.

5.2 Superpixel Graph Cut

(a) (b) (c)

Figure 7: A comparison of boundary approximation methods: (a)
Original image. (b) Boundary approximated using polygon. (b)
Boundary approximated using Bezier curves.

The graph cut technique poses the foreground cutout as a binary
labelling problem. The image is represented by a graph G = 〈V,E〉,
where V is the set of all vertices and E is the set of all edges con-
necting neighboring vertices in the graph. The problem is then re-
stated as giving a label, xi to every vertex Xi in our graph. The
solution Xi = xi is calculated by minimizing a Gibbs energy E(X):

E(X) = ∑
i∈V

E1(xi)+λ ∑
(i, j)∈E

E2(xi,x j), (2)

where E1(xi) represents the cost of the labeling for xi and E1(xi)
represents the cost when two vertices i and j sharing an edges are
labelled xi and x j . E1(xi) defines the penalty for assigning the la-
bel of vertex i as foreground or background. E2(xi,x j) defines the
penalty for assigning adjacent vertices i and j different labels.

4

Online Submission ID: 105

We use the same energy definition as in lazy snapping [25]. The
downsampled image pixels are grouped into sub-regions using the
SLIC Superpixels algorithm. As a result, V represents the set in-
cluding all the superpixels, and E represents the set of all arcs con-
necting a pair of adjacent superpixels. After that, the user marks the
foreground and background regions of the image by finger stroking
on the touch screen as foreground seeds, F and background seeds,
B. Any regions not contained inF or B are considered as in the un-
certain vertices U . Once these sets are created, the average colors
of the regions in F and G are clustered using the k-means method.
For each vertex i, we then calculate the minimum distance from its
average color to the set of foreground clusters and to background
clusters. These two distances are denoted dF

i and dB
i for the fore-

ground and background. E1(xi) and E2(xi) in Eq. 2 are then defined
as:

E1(xi = 1) = 0 E1(xi = 0) = ∞ ∀i ∈ F
E1(xi = 1) = ∞ E1(xi = 0) = 0 ∀i ∈ B
E1(xi = 1) = dF

i
dF

i +dB
i

E1(xi = 0) = dB
i

dF
i +dB

i
∀i ∈ U

,

(3)
and

E2(xi,x j) =
|xi− x j|
Ci j +1

, (4)

respectively. Here, Ci j = ||C(i)−C(j)||2) is the L2 distance be-
tween vertices i and j in the RGB color space. We minimize the
energy E(X) using the max-flow min-cut algorithm [5].

5.3 Per-Pixel Boundary Graph Cut

(a) (b)

(c) (d)

Figure 8: Localized per-pixel graph cut. In (a), the original image
with our region of interest outlined. In (b), the boundary between
the foreground and background is approximated by Bezier curves.
In (c), a single Bezier curve is dilated to form the region U in which
the local graph cut will be performed. In (d), we zoom in on a per-
pixel graph cut region. The seed sets F and B (shown in red and
blue) are the boundaries of U sufficiently distant from the endpoints
of the Bezier curve.

Once the initial graph cut is finished, the boundary that defines
the initial foreground segmentation is converted into an editable set
of Bezier spline curves (figure 7). It serves a guide for a next-
level per-pixel graph cut located in a small band around the curve
edge. This means that V becomes the set of pixels rather than pre-
segmented regions in the first cut. Obviously, increased V leads

Data: Set of Bezier curves, C
Foreground mask from Superpixel Graph Cut, FSP
Background mask from Superpixel Graph Cut, BSP
Result: Set of labelings (foreground or background) for each

region defined by the dilated Bezier curve.
for c ∈C do

Dilate c to determine set of local Graph Cut pixels P;
Determine set of edge pixels E ⊂ P;
F ←− 0;
B←− 0;
for e ∈ E do

if e ∈ FSP and the distance from e to endpoints of c is
greater than ε then

F ←− F ∪{e}
end
if e ∈ BSP and the distance from e to endpoints of c is
greater than ε then

B←− B∪{e}
end

end
U = P− (F ∪B);
GraphCut(F,B,U);

end
Algorithm 1: Per-Pixel Boundary Graph Cut

Table 2: The true positive rate (TPR) for the different methods.

Image Graph Cut Our Method Lazy Snapping Grabcut
Bill.jpg 98.08% 98.5% 98.15% 97.1972%
Qin.jpg 99.65% 97.59% 97.61% 95.73%

Grandpa.jpg 98.55% 98.21% 98.11% 93.07%
Elephant.jpg 99.76% 99.48% 98.93% 96.73%

Pravi.jpg 96.81% 96.03% 95.98% 92.79%

to the slower computation and the per-pixel graph cut could stil-
l be quite expensive even though we are only considering a small
boundary region. To accelerate the computation, we further sub-
divide the boundary band into multiple overlapped sub-scripts as
shown in figure 8 (c). The entire procedure is outlined algorithm 1.
The advantages of this are approach are two-fold. First, it may not
be necessary to perform boundary refinement over the entire bound-
ary as in previous methods [18, 25] and we allow the user to inter-
actively specify boundary regions that they believe are not satisfac-
tory. Second, the per-pixel graph cut can be trivially parallelized
over the sub-scripts while the size of each graph cut is significantly
reduced. Therefore, our parallelized per-pixel graph cut is able to
be accomplished even with a mobile CPU. We intentionally over-
lap neighboring sub-scripts so that the boundary refinement will not
lead to any discontinuity as we linearly interpolate the boundary at
the overlapped region based on the parametrization of the Bezier
curves. On average, a ×n performance boost can be expected with
our implementation, where n is the number of CPU cores available
on our mobile platform. A final foreground mask is generated using
a bi-cubic interpolation over a 4×4 pixel neighborhood.

6 EXPERIMENTAL RESULTS

Our interface was implemented on an Apple iPhone 6 using a
mixture of C++ and Objective-C. The iPhone 6 is equipped with a
1.4 GHz Apple A8 (Dual Core) with 1 GB LPDDR3 RAM. The
iPhone 6 has an 8 megapixel camera with capture resolution up
to 3264× 2448. Our desktop development was done using on an

5

Online Submission ID: 105

(a)

(b)

(c)

(d)

(e)

(f)

Figure 9: A comparison of results from the different image segmentation algorithms: (a) Original image with user input strokes. (b) Ground
truth. (c) Graph Cut. (d) Lazy Snapping. (e) Grabcut. (f) Our method.

6

Online Submission ID: 105

(a) (b) (c)

Figure 10: A comparison of boundary representation methods. In
(a), the original image. In (b), multiple vertices need to be adjusted
when the boundary is approximated using a piecewise linear curve.
In (c), only one control point needs to be adjusted when the bound-
ary is approximated using a quadratic Bezier curve.

Apple Macbook Pro with a 2.93 GHz Intel Core 2 Duo and 8 GB
1067 MHz DDR3 RAM.

Quantatative Comparison
To quantitatively compare the different segmentation methods we
manually created a ground truth foreground segmentation in Adobe
Photoshop R©. We then calculated the ratio of foreground pixels that
agree with our ground truth image to the total number of pixels in
each test image. This measurement is known as the true positive
rate (TPR). Additionally, we measured the total segmentation time
for each method accross a test suite of five images.

Comparison with Graph Cut
We first compare our method with a per-pixel implementation of
Graph Cut [4]. As table 2 shows, the per-pixel Graph Cut provides
the most accurate foreground segmentation results among all the
methods we tested. Even though our method far surpasses Graph
Cut in terms of performance we fail to achieve the same quality of
foreground segmentation, even with our secondary per-pixel graph
cut refinement step. The reason for the discrepancy in the result-
s achieved with Graph Cut and our method is due to the fact that
our per-pixel graph cut is localized within the regions defined by
dilating our Bezier curves which define the coarse-level boundary.
Therefore, the regional energy term E1 in equation 2 contains only
local information during our methods per-pixel Graph Cuts refine-
ment step. However, while higher quality results are obtained using
Graph Cut, as table 1 shows the performance of the method, with a
max delay of 10.81 seconds in our tests, does not allow for a respon-
sive experience where delays should be measured on a millisecond
scale.

Comparison with Lazy Snapping
We next compare our method with lazy snapping [25] since we
use the same energy formulation. We see in Figure 9 the quality of
the segmentation achieved using lazy snapping and our method are
quite similar. However, Table 1 reveals that lazy snapping does not
maintain an interactive performance at high resolutions. This is due
to the fact that lazy snapping uses a different energy formulation for
the graph cut problem in the localized boundary refinement stage
which incurs additional computational overhead.

Comparison with GrabCut
GrabCut [23] is another well known image segmentation algorith-
m. We use the implementation provided in OpenCV’s Image Pro-
cessing API via the grabCut function [6]. As Table 1 shows, the
methods performance is not suitable for for mobile devices with one
image from our test suite taking 9.26 seconds to process. In addi-
tion, Grabcut requires that the user specify a bounding box around
the foreground subject in the image which can be problematic on
the mobile phone from a usability standpoint.

7 DISCUSSION AND LIMITATIONS

We present an interface for high quality image segmentation on mo-
bile phone at an interactive rate. This is achieved by performing
graph cut, an energy optimization optimization method on a low-
resolution pre-segmented version of the target image and then lo-
cally adapting/refining the boundary on full-size image. However,
our current method still has many limitations. For example, the
performance of a per-pixel graph cut is very sensitive to the prob-
lem size. On multi-megapixel images, large refinement regions
being processed at the original resolution could result in long de-
lays which are unsuitable for an interactive application. With the
megapixel race being brought to the mobile domain by phone man-
ufacturers this limitation will likely grow more pronounced in the
future. Therefore, we may extend our method to only perform the
boundary refinement step on ambiguous boundary regions instead
of considering the entire boundary. With mobile-GPU compute ca-
pabilities quickly approaching that of their desktop counterpart we
would also like to explore the possible parallelization of the graph
cut algorithm on a mobile GPU in the future. The human-computer
interaction component of developing an interactive image segmen-
tation application cannot be ignored and we plan to release our iOS
app to further refine the user experience through user studies.

8 CONCLUSION

We presented a system for an efficient image segmentation on mo-
bile phones using multi-level graph cut. To meet the limitations
of mobile phone hardware our solution carefully tweaks the clas-
sic graph cut algorithm. By down-sampling the original high-
resolution image and selecting a rough cutout region on this low-
resolution image with a superpixel based pre-segmentation we en-
hanced the performance without compromising the quality of the
segmentation. The segmented foreground is then mapped back to
the full-size image and the image undergoes an adaptive boundary
refinement. We showed our system completes well-sampled cuts on
an Apple iPhone 6 in a lag-free manner even for multi-megapixel
images. We believe our approach to mobile image segmentation
lays a foundation for further image manipulations performed in re-
al time for mobile device users.

REFERENCES

[1] K. S. A. L. P. F. A. Radhakrishna, A. Shaji and S. Susstrunk. Slic
superpixels. EPFL, Technical Report 149300, June 2010.

[2] E. H. Adelson, C. H. Anderson, J. R. Bergen, P. J. Burt, and J. M. Og-
den. Pyramid methods in image processing. RCA engineer, 29(6):33–
41, 1984.

[3] M. Birinci and K. Ugur. Interactive image segmentation based on
superpixel grouping for mobile devices with touchscreen. pages 1–6,
2014.

[4] Y. Boykov and M. Jolly. Interactive graph cuts for optimal boundary
and region segmentation of objects in nd images. Proc. ICCV, pages
105–112, 2001.

[5] Y. Boykov and M. Jolly. An experimental comparison of min-cut/max-
flow algorithms for energy minimization in vision. IEEE PAMI,
26(9):1124–1137, 2004.

[6] G. Bradski. The opencv library. Dr. Dobb’s Journal of Software Tools,
2000.

[7] W. L. Briggs, V. E. Henson, and S. F. McCormick. A Multigrid Tutori-
al. SIAM: Society for Industrial and Applied Mathematics, Philadel-
phia, PA, 2 edition edition, June 2000.

[8] J. Chen, S. Paris, and F. Durand. Real-time edge-aware image pro-
cessing with the bilateral grid. ACM Trans. Graph., 26(3), July 2007.

[9] D. Comaniciu and P. Meer. Mean shift: A robust approach to-
ward feature space analysis. IEEE Trans. Pattern Anal. Mach. Intell.,
24(5):603–619, May 2002.

[10] L. G. S. D. Lui, K. Pulli and Y. Xiong. Fast interactive image segmen-
tation by discriminative clustering. MCMC ’10 Proceedings of the

7

Online Submission ID: 105

2010 ACM multimedia workshop on Moblie and cloud media comput-
ing, pages 47–52, 2010.

[11] I. Gallo, A. Zamberletti, and L. Noce. Interactive object class segmen-
tation for mobile devices. image, 18:20.

[12] Y. Gao and X. Liu. Integrating bayesian classifier into random walk
optimizer for interactive image segmentation on mobile phones. pages
1–6, 2014.

[13] C. Jung, M. Jian, J. Liu, L. Jiao, and Y. Shen. Interactive image seg-
mentation via kernel propagation. Pattern Recognition, 47(8):2745–
2755, 2014.

[14] M. Kass, A. Witkin, and D. Terzopoulos. Snakes: Active contour
models. International Journal of Computer Vision, 1(4):321–331,
1988.

[15] V. Kwatra, A. Schödl, I. Essa, G. Turk, and A. Bobick. Graphcut
textures: Image and video synthesis using graph cuts. In ACM SIG-
GRAPH 2003 Papers, SIGGRAPH ’03, pages 277–286, New York,
NY, USA, 2003. ACM.

[16] V. K. L. Vincente and C. Rother. Watersheds in digital spaces: an
efficient algorithm based on immersion simulations. IEEE PAMI,
13(6):583–598, 1991.

[17] D. Liu, Y. Xiong, L. Shapiro, and K. Pulli. Robust interactive image
segmentation with automatic boundary refinement. pages 225–228,
2010.

[18] J. Liu, J. Sun, and H.-Y. Shum. Paint selection. ACM Trans. Graph.,
28(3):69:1–69:7, July 2009.

[19] E. N. Mortensen and W. A. Barrett. Intelligent scissors for image com-
position. In Proceedings of the 22Nd Annual Conference on Computer
Graphics and Interactive Techniques, SIGGRAPH ’95, pages 191–
198, New York, NY, USA, 1995. ACM.

[20] J. Ning, L. Zhang, D. Zhang, and C. Wu. Interactive image segmenta-
tion by maximal similarity based region merging. Pattern Recognition,
43(2):445–456, 2010.

[21] D. R. Olsen, Jr. and M. K. Harris. Edge-respecting brushes. pages
171–180, 2008.

[22] L. Reese and W. Barrett. Image editing with intelligent paint.
21(3):714–724, 2002.

[23] C. Rother, V. Kolmogorov, and A. Blake. ”grabcut”: Interactive fore-
ground extraction using iterated graph cuts. ACM Trans. Graph.,
23(3):309–314, Aug. 2004.

[24] A. Vedaldi and S. Soatto. Quick shift and kernel methods for mode
seeking. pages 705–718, 2008.

[25] C.-K. T. Y. Lit, J. Sun and H.-Y. Shum. Lazy snapping. ACM Trans.
Graph., 23(3):303–308, 2004.

8

