
Contents lists available at ScienceDirect

Automation in Construction

journal homepage: www.elsevier.com/locate/autcon

Customization and generation of floor plans based on graph transformations

Xiao-Yu Wanga,*, Yin Yangb, Kang Zhanga

a The University of Texas at Dallas, 800 W Campbell Rd., Richardson, TX, USA
bUniversity of New Mexico, Albuquerque, NM, USA

A R T I C L E I N F O

Keywords:
Floor planning
Modeling
Rectangular dual
CAD

A B S T R A C T

This paper introduces an approach for automatic generation of rectangular floor plans based on existing legacy
floor plans with the capability of further improvement and customization. Our approach first derives a dual
graph from the given input file specifying a floor plan. It then either automatically reproduces varied floor plans
retaining the connectivity of the original plan or performs transformation rules to manipulate spatial relations
among rooms, and to generate modified floor plans corresponding to specific requirements. Our approach in-
troduces constraints, such as the maximum width-height ratio, to support the flexibility for various design re-
quirements. A graphical user interface is provided for users to perform the automatic generation process. An
experiment has been conducted to validate the feasibility of our approach and time taken in generating floor
plans. It shows that our method is able to generate highly-customized floor plans in reasonable time.

1. Introduction

In the last few decades, researchers have developed various ap-
proaches to generate interior building layouts in styles similar to ex-
isting famous or historic design paradigms. Stiny and Mitchell [1]
proposed a shape grammar method for the room arrangement of the
Palladian style. They later proposed another shape grammar to generate
plans following the style of Mughul gardens [2]. Koning and Eizenberge
[3] developed a set of rules to reproduce the Frank Lloyd Wright's
prairie style houses. Recently, we have witnessed the era of information
explosion. Numerous floor plan resources are now digitized and
achieved on the computers, which allows graphics and vision techni-
ques to be applied to extract the spatial relation of rooms in the floor
plan. For example, Fan et al. [4] presented a structure completion
method from facade layout images, Liu and Zlatanova [5] extracted
adjacency relations from CityGML, and Lin et al. [6] obtained obstacle
data from the Industry Foundation Classes (IFC) data for pathfinding.
Moreover, there are also works that aim to generate floor plans auto-
matically or semi-automatically. Bhasker and Sahni [7,8] used a linear
algorithm to check if there are rectangular duals and, if so, generates
rectangular duals for any n-vertex planar triangulated graphs. Other
researchers focus on the placement of components, e.g. Kahng [9]
provided a way that places components into a space. However, his
approach generates new spaces, which could change the connectivity of
the original graph.

Clearly, it is highly desired to be able to reproduce well-known

legacy floor plans, adjust or modify them to suit modern lifestyles while
retaining the room adjacency, i.e., one of the most representative fea-
tures for a given building style. To this end, we propose a Graph
Approach to Design Generation or GADG, which generates floor plans
based on the room adjacency from an input (as shown in Fig. 1). An
adjacency between two rooms means they are connected by sharing a
door or a wall. Input files could be floor plans or semantic rich lan-
guages specifying necessary requirements. With the extracted in-
formation, users are able to modify the corresponding dual graphs by
applying transformation rules. To enhance usability and operability, we
introduce two parametric transformation rules, the addition rule and
subtraction rule, for modifying rooms. The rules are applied directly to
the graph to add/remove vertices instead of rooms. Then, GADG per-
forms an algorithm to remove isolated vertices from the graph. Since
our approach only generates rectangular rooms from properly trian-
gulated planar graphs, a validation algorithm is performed to check the
existence of rectangular floor plans for the graph. Finally, with user-
specified constraints, such as setting the maximum aspect ratio for each
generated room and moving internal rooms to the boundary, GADG
reproduces a set of new plans automatically by applying a rectangular
dual finding algorithm so that the original connectivity information is
preserved. With these generated plans, designers can come up with new
design ideas or directly take the generated floor plans as prototypes.

GADG is featured by providing a fully automated process to gen-
erate controllable and tractable floor plans with identical connectivity.
It is able to incorporate various constraints during the generation

https://doi.org/10.1016/j.autcon.2018.07.017
Received 14 December 2017; Received in revised form 14 July 2018; Accepted 18 July 2018

* Corresponding author.
E-mail addresses: xwang@utdallas.edu (X.-Y. Wang), yangy@unm.edu (Y. Yang), kzhang@utdallas.edu (K. Zhang).

Automation in Construction 94 (2018) 405–416

Available online 01 August 2018
0926-5805/ © 2018 Elsevier B.V. All rights reserved.

T

http://www.sciencedirect.com/science/journal/09265805
https://www.elsevier.com/locate/autcon
https://doi.org/10.1016/j.autcon.2018.07.017
https://doi.org/10.1016/j.autcon.2018.07.017
mailto:xwang@utdallas.edu
mailto:yangy@unm.edu
mailto:kzhang@utdallas.edu
https://doi.org/10.1016/j.autcon.2018.07.017
http://crossmark.crossref.org/dialog/?doi=10.1016/j.autcon.2018.07.017&domain=pdf

process to generate floor plans under a wide range of design require-
ments. Table 1 shows a comparison of features between existing floor
plan generation approaches and our approach.

2. Related work

Many researchers have proposed approaches for automatic genera-
tion of floor plans. Placing rooms into given planes is known as the
space allocation problem [17]. Some researchers attempted to solve this
problem by exhaustively generating all possible results, e.g., Galle et al.
[10] proposed an algorithm that generates every possible building plan
for any given number of rooms. The complexity of this algorithm in-
creases exponentially with the increasing number of rooms. Others
focus on generating floor plans with heuristic placements. Shekhawat
[18] developed an algorithm that utilizes the given spaces inside a
rectangle to find satisfactory results.

Some approaches generate floor plans based on a given room ad-
jacency graph. Roth et al. [11] proposed an approach to turn a graph to
a rectangular plan with the adjacency preserved. Their approach,
however, is unable to automatically generate designs. Kozminski [13]
developed an O(n2) algorithm to generate rectangular duals for given
triangulated graphs. Bhasker and Sahni [7,8], then, improved this ap-
proach by providing a linear time algorithm for verifying and gen-
erating rectangular floor plans for triangulated graphs. The reproduced
floor plans retain the same adjacency relations as the input graphs. This
approach generates floor plans according to n-vertex planar triangu-
lated graphs, which means that the results generated by this algorithm
retain the same connectivity. Since input graphs are user-specified,
without considering existing floor plans and different requirements, it is
difficult to apply this approach to real-world designs.

An algorithm of Martin [15] generates floor plans by making and
manipulating graphs in three main steps. The first step creates a graph
to represent the floor plan. Each vertex in the graph represents a room
in the floor plan. It then distributes rooms over the footprint according
to the generated graph. Finally, the approach expands rooms using the
Monte Carlo method to allow the rooms to grow or shrink.

Marson and Musse [16] proposed an algorithm for automatic gen-
eration of floor plans based on tree-maps provided to the program. In
their approach, the initial shapes are subdivided into floor plans

according to a given tree-map. Every child room in the tree-map is
generated from the space of its parent. Therefore, the results maintain
the hierarchical relations, while the adjacency relations between rooms
are not guaranteed.

The shape grammar [19] has been widely used to generate and
analyze building layouts. It is able to model spatial relations of geo-
metries in paintings and sculptures. Shapes expand automatically with
given rules in a shape grammar, providing the possibility for programs
to generate different layouts by applying rules. Harada et al. [20] de-
veloped an interactive system with the shape grammar for generating
building layouts.

Wonka et al. [14] proposed the split grammar, a parametric set
grammar based on the concept of shapes, for automatic generation of
building designs. To increase the efficiency and automation of rule
derivations, a shape grammar called CGA shape [21] is proposed, which
extends the split grammar by introducing the component split and the
mass modeling functionality. The same authors also proposed a set of
algorithms that derive high-quality 3D models from single facade
images with arbitrary resolutions [22]. Wu et al. [23] later proposed an
algorithm to automatically derive split grammars from facade layouts.

Instead of using a shape grammar, Merrel et al. [17] generated
three-dimensional buildings with internal structures based on a given
set of high-level requirements. Lin et al. [24] proposed a hierarchical
approach for generating various 3D models that resemble an input
piece with the same style. These approaches set a solid foundation for
automatic building generation, but are unable to control the positions
and adjacency of internal rooms.

In summary, none of the aforementioned approaches has been
proposed to perform the complete design process for designers to
generate a set of floor plans according to the required adjacency rela-
tions from the input specification. Some approaches require redundant
control vertices added to the input graph or undesirable rooms would
be created. Others may generate floor plans according to shape gram-
mars, but cannot guarantee the resulting style and shapes of rooms.

3. Preliminaries

Considering a floor plan as a planar graph (,)G V E , where each
edge represents a wall, and each vertex represents an intersection of

Fig. 1. The overall flow chart of the proposed floor plan generation pipeline.

Table 1
Features of different floor plan generation approaches.

Features [3] [10] [11] [12] [13] [7] [14] [15] [16] [17] [4] Our approach

Giving a floor plan to guide the generation – – – – – – – – – X – X
Generating floor plans conforming to a style X (–) (–) (–) (–) (–) X (–) (–) X (–) X
Using constraints to control generated plans – – – – – – X – – X X X
Supporting a fully automatic generation process – (X) – – X X X X X – – X
Using graphs to consider room adjacencies – X X X X X – X X (–) – X
2D/3D 3D 2D 2D 2D 2D 2D 3D 3D 2D 2D/3D 3D 2D

X: considered. (X): implicitly considered. –: not considered. (–): not mentioned.

X.-Y. Wang et al. Automation in Construction 94 (2018) 405–416

406

walls, we can use the dual graph (,)d d dG V E ofG to clearly present the
adjacency of the floor plan, as shown in Fig. 2. Each vertex in dV re-
presents a room, which is also referred to as a shape, in G . An edge
connecting two vertices in dG implies the adjacency between the cor-
responding rooms.
Definition 1 (Face [25]). A face of the planar graph G is a maximal
section of the plane in which any two points can be joined by a curve
that does not intersect any part of G .

In other words, a face is a sub-graph which contains no other vertex
or edge, and the unbounded face outside the boundary of G is not
considered. Each face in G represents a room in the floor plan.
Definition 2 (Dual graph [25]). The dual graph dG ofG is a graph that has
a vertex corresponding to each face (room) of G , and an edge joining
two neighboring faces for each edge in G .

For example, the shadowed Bedroom I of the floor plan in Fig. 2 (a)
is represented as a vertex of the dual graph in Fig. 2 (b). Another special
example is illustrated in Fig. 3 (a), where four rooms (A, B, C, D) share a
corner, but A and D are not adjacent, nor B and C, as defined by the dual
graph in Fig. 3 (b). The dual graph of a planar graph is also a planar
graph, proved by Nishizeki [26]. Next, we generalize the definition of
Properly Triangulated Planar graph (PTP) originally proposed by
Bhasker and Sahni [7]. A PTP graph is a dual graph with additional
constraints as defined below.
Definition 3 (Properly triangulated planar graph). A graph (,)p p pG V E ,
associated with a floor plan, is a PTP graph if and only if it is a
connected graph with a vertex set pV and an edge set pE such that:

• every face in pG is a triangle;

• every vertex has degree≥ 4;

• every non-face cycle has more than 3 edges.

Definition 4 (Rectangular dual graph [7]). A RDG rG of an n-vertex
graph, (,)G V E , is comprised of n non-overlapping rectangles with the
following properties:

• Each vertex ∈vi V , corresponds to a distinct rectangle i in the
rectangular dual.

• If (i, j) is an edge in E , then rectangles i and j are adjacent in the
rectangular dual.

The adjacency here implies that two rectangles i and j share an edge.
A RDG, representing a rectangular floor plan, is a generated planar
graph based on the adjacency of an input dual graph.

Kozminski and Kinnen [13] prove that a graph with all faces tri-
angular has rectangular duals if and only if it is a PTP graph. Bhasker
and Sahni [8] then narrow the restriction down to only meet the first
and third constraints of being a PTP graph. A PTP can be converted to
many possible RDGs, and the RDG essentially maps a PTP back to a
rectangular floor layout. Therefore, every face in a RDG potentially
represents a room. Fig. 4 shows a PTP graph, pG , and a rectangular dual
of the graph, rG . Five vertices in pG are mapped to five faces in rG with
adjacencies preserved.

Fig. 2. A simple floor plan and its corresponding dual graph.

Fig. 3. A special case.
Fig. 4. A PTP graph and one of its RDGs.

X.-Y. Wang et al. Automation in Construction 94 (2018) 405–416

407

4. Transformation rules

In this paper, we propose two transformation rules, the addition rule
and subtraction rule, to GADG for automatic generation modified floor
plans. The addition rule allows users to add rooms into a design with
additional constraints. The subtraction rule provides a way for users to
remove rooms. The transformation rules are applied to the graph
structure directly, assuming the input graph to be a PTP. Then, a rec-
tangular dual finding algorithm is introduced to map vertices in a dual
graph to rectangles according to the connectivity among vertices. Each
PTP possesses an associated base-layout defined as:
Definition 5 (Base-layout). A base-layout ℒ is specified by a three-tuple
b, ,R A , where b is the boundary of the design, R is a set of rooms
inside b, and A is the set of attributes including spatial and semantic
information associated with rooms in R .

For example, the base-layout of the PTP graph b, ,L R A pre-
sented in Fig. 4 (a) is specified as: b is the boundary of the rectangular
dual in Fig. 4 (b),R is a collection of rooms, i.e. rA, rB et al., andA is a
set of attributes associated with rooms, for example aA implies that rA is
on the boundary adjacent with three rooms rB, rC and rE.

A base-layout of a PTP graph b, ,L R A will have the updated
base-layout of + +b r a, { }, { }i iR A after being applied by the addi-
tion rule to add a room ri with its associated attribute ai. Similarly, the
base-layout will be updated to − −b r a, { }, { }i iR A by applying the
subtraction rule to remove a room ri with its associated attribute ai.

The addition rule allows a maximum of 4 adjacent vertices for a
newly inserted vertex. Fig. 5 gives an example of applying the addi-
tion and subtraction rules to a PTP. Two possible layouts generated by
GADG after applying the addition rule are presented in Fig. 6.
Algorithms 1 and 2 report the implementation details for addition and
subtraction rules in order to make them operational in a shape
grammar interpreter. The interpreter is capable of automatically
generating geometric products according to a given set of shapes and
rules applied to the shapes [27]. We have implemented our floor plan
generation algorithm and all the presented functionality into this
interpreter.

The input to the addition rule is a room ri, which corresponds to a
vertex vi to be inserted into the PTP, its attribute ai, and its adjacent
vertices iN . If ai says that vi is on the boundary, the cardinality of iN

must be less than 3 (≤| | 3iN) and the algorithm seeks for a triangle face
fi in pG such that fi contains all vertices in iN and has a boundary edge.
The addition rule fails if fi does not exist. Otherwise, we remove the
boundary edge and connect vi with all vertices of fi. If vi is not a
boundary vertex, we must have ≤| | 4iN and the algorithm attempts to
find a quadrilateral cycle in pG which contains all the vertices in iN .
According to the properties of PTP, this quadrilateral cycle must consist
of two triangular faces sharing an edge. The algorithm then removes
this shared edge and connect vi to all the vertices on the cycle. The
layouts generated by the addition rule preserves the topology of the
input PTP, and it can be proven that the resulting graph remains tri-
angulated.

Fig. 5. An example of applying transformation rules to an input PTP.

Fig. 6. Layouts corresponding to the dual graph in Fig. 3. (a) is the original layout of the input file. (b) and (c) are two possible layouts generated by inserting the
room L into the layout by the addition rule.

X.-Y. Wang et al. Automation in Construction 94 (2018) 405–416

408

Algorithm 1. The addition rule.

Theorem 1. A PTP remains triangulated after being inserted with a new
vertex by Algorithm 1.

Proof. Since the original PTP (,)p i iG V E is triangulated, if a new vertex
vi is added as a boundary vertex, Algorithm 1 removes the boundary
edge of a fi (line 7 in Algorithm 1), which only destroys fi and yields two
new triangle faces. All other faces in pG are unchanged. Therefore, pG

remains triangulated. On the other hand, if vi is not on the boundary,
the removal of (v2,v4) (i.e. line 19) would only destroy triangles in Q
and all the other faces in pG are unchanged. Therefore, lines 21–24 yield
four new triangle faces into pG and pG remains triangulated.

Conversely, the subtraction rule removes a vertex vi from a PTP as
outlined in Algorithm 2. Let iN be the set of one-ring neighbors of vi in

pG . Removing vi would leave an empty polygonal face specified by iN .
Therefore, the subtraction rule needs to perform the triangulation to
guarantee the resulting graph to be a PTP. If vi is on the boundary, we
also need to find its preceding and succeeding vertices vj, vk on the
boundary and connect vj and vk after the removal of vi to prevent any
internal vertex from being a boundary one.
Theorem 2. A PTP after removing a vertex by Algorithm 2 remains
triangulated.

Proof. Removing vi in a PTP pG would destroy triangles incident to vi
and leave an empty polygonal face on pG if vi is internal. Otherwise,
adding edge (vj,vk) (line 4 in Algorithm 2) closes the gap at the
boundary. The final triangulation (line 11) restores all the faces to be
triangles.

Algorithm 2. The subtraction rule.

Our transformation rules apply to a PTP, which is the dual graph of
a floor design. In other words, they alter the topology of a floor plan.
Designers have full control of results generated by GADG.

5. Method

GADG first derives a dual graph from an input floor plan (in the IFC
format). It then applies transformation rules to the graph, validates and
converts the modified graph back to a RDG. Converting from a graph to
a RDG is not unique, and GADG delivers a distinct RDG each time for
further improvements/modifications. GADG is versatile, allowing var-
ious parameter specifications. With different parameter settings, var-
ious customized results may be produced.

5.1. Dual graph generation from an IFC input

The IFC format is one of the most widely used templates to describe
buildings and architecture designs. It is an open standard for sharing
the Building Information Modeling (BIM) data among different appli-
cations. A room in an IFC is specified by an ifcSpace class and the
adjacency between rooms is indicated from ifcRelSpaceBoundary
class.

5.2. Removing isolated rooms

Kozminski and Kinnen [13] establish that there exists a rectangular
dual for any graph iff the graph is a PTP graph. To check the existence
of a rectangular dual graph for some special cases, the algorithm checks
all vertices in the dual graph to find ones with only one neighbor, most
likely to be closets in floor plans. As Fig. 7 shows that the Closet only
connects to a Bedroom, implying that the Closet is contained in the
Bedroom. In this case, the dual graph generated from this floor plan is a
non-triangulated graph. Since there is a vertex with only one neighbor,
the graph is not a PTP graph. To extend the usability and adaptability of
our algorithm, we treat the vertex as an attribute of its neighbor and
remove it from the graph. We then guarantee that the dual graph is
triangulated even though one or more closets exist. It ensures graphs to
pass the connectivity check for the aforementioned special case. During
the generation process, we generate rooms for these vertices separately.

5.3. Floor plan generation

To generate floor plans from dual graphs, we extend the rectangular
dual finding algorithm originally proposed by Bhasker and Sahni [7] by

X.-Y. Wang et al. Automation in Construction 94 (2018) 405–416

409

providing extra flexibility in choosing corner vertices. Bhasker and
Sahni [7] do not consider the special case with cycles on the left
boundary. Our algorithm consists of two steps, namely PTP verification
and RDG generation.

PTP verification Before generating RDGs or floor plans, GADG
performs a linear algorithm to check the existence of rectangular
duals for the given graph. Because A graph has rectangular duals if
and only if it is a PTP graph [8], our algorithm thus checks whether
the derived graph possesses all of the PTP properties as defined in
Definition 3. More specifically, for the dual graph (,)d d dG V E of an
input floor plan the algorithm first confirms that every edge belongs
to at least one triangular face. We then count the total number of
interior faces, which should equal to − +| | | | 1d dE V if dG is a PTP.
RDG generation Many algorithms have been proposed for gen-
erating RDG from graphs. Maling et al. [28] proposed a method to
find optimal rectangular plans. Kozminski and Kinnen [13] pre-
sented an O(N2) algorithm for finding RDG from triangulated
graphs. These methods either have high complexities or induce re-
dundant vertices. Alternatively, we generalize Bhasker and Sahni's
algorithm to produce RDGs [7,8].

Assuming the input PTP pG is shown on the right, we pick four
distinct corner vertices, namely NW, NE, SE and SW, out of the
boundary vertices in pG (vertices 1, 3, 7, and 5 in the figure). The ori-
ginal boundary of pG can now be decomposed into four segments: top,
right, bottom and left, based on which GADG generates a directed path
diagram graph (PDG) or dG . We start with vertex NW and a vertex
which is on top of all the rectangle, called HeadNode. By traversing
along the left boundary, vertices 1 and 5, as well as all the edges along
the path from NW to SW are added to dG (and also removed from pG).
Vertices 2 and 6 become new NW and SW corners in the updated pG .
However, vertices 2, 4 and 6 form a cycle in pG , and the left edge cannot
be directly incorporated into dG . To break the cycle, we connect vertex 4
to the last vertex in dG (i.e. vertex 5), add (4,5) to dG , and process the
remaining left boundary as before. The algorithm stops when all the
vertices in pG are included in dG . Fig. 8 reports the step-by-step result of
generating dG from pG . Clearly, dG is cycle-free and builds a hierarchy of
all the vertices.

To generate the RDG, the algorithm iterates all paths in dG from left
to right starting from the HeadNode. As shown in Fig. 9, the algorithm
traverses the leftmost path 1 → 5, and converts each vertex along the

path into a rectangle forming a column in the RDG. The next path is 2
→ 4 → 5. According to the original PTP pG , vertices 2 and 4 are con-
nected to the existing vertex 1. The algorithm creates rectangles 2 and
4, and expands rectangle 5 to provide the base for both rectangles 1 and
4. The next path is 2 → 6. Rectangle 2 already exists in the RDG, and is
expanded to the next column. Since rectangle 6 needs to be adjacent to
rectangles 2, 4 and 5, it is placed under 2 and closes 4 and 5. The final
path 3 → 7 creates the last two rectangles and closes off all generated
rectangles. The actual width and height of each rectangle in the RDG
can be controlled by the user while maintaining the room connectivity.

While the user decides how to pick four corner vertices, there is an
additional constraint that we need to check before generating RDG. As
shown in Fig. 10, if NW, NE, SE and SW are set as vG, vF, vD, vB re-
spectively, the left boundary becomes (vG,vH,vB), forming a cycle. Since
the PDG is empty at this stage, we cannot break the cycle as in Fig. 8,
and the algorithm thus fails. To avoid this failure, we require that the
first left boundary must be cycle-free. Otherwise, GADG asks the user to
re-select four corners.

5.4. User-specified constraints

GADG is extensible and can incorporate various additional con-
straints to control the generated floor plans. The current implementa-
tion allows two constraints. First, GADG allows designers to set the
maximum width-height ratio of every room generated so that extremely
narrow rooms can be avoided. In real-world applications, rooms with
the aspect ratio greater than 3 are most likely undesired. Fig. 11 reports
the resulting plans with and without applying this constraint. We also
allow the user to move an internal room to the boundary so that, for
instance, it could have a window. Such an operation is only available
for an internal vertex in the PTP that is adjacent to at least one
boundary vertex1. Because each face on a PTP must be a triangle, this
internal vertex vI is either adjacent to two boundary vertices vA and vB
(Example 1 in Fig. 12) or to a single boundary vertex vA (Example 2 in
Fig. 12). Since a PTP graph is guaranteed to have at least a rectangular
dual, our approach is always feasible to move internal rooms to the
boundary.

For Example 1, we simply remove (vA,vB) from the PTP and add two
boundary edges (vA,vI) and (vI,vB). For Example 2, assume that vC is the
boundary vertex immediately after vA clock-wise on the boundary. The
algorithm removes (vA,vC) and inserts two new boundary edges (vA,vI)
and (vI,vC). In addition, an internal edge (vI,vD) is also added for any
non-boundary vertex vD that is adjacent to vA, and right to the edge
(vA,vI). Doing so adds a new triangle face to the PTP for a vD and the
degree of vD is increased by 1. But the resulting graph remains a PTP
according to Definition 3. Such an operation is symmetric if one chooses
to move vI between vB and vA, where vB is the boundary vertex im-
mediately before vA clock-wise.

The execution time of GADG for generating floor plans of increasing
number of rooms is presented in Fig. 13, with and without the aspect
ratio constraint. The constraint of the maximum aspect ratio of length
over width of each room is set at 3. For each room number setting, we
generate 20 different floor plans and calculate the average execution
time. The experiment shows that GADG is scalable, since with the in-
creasing number of rooms, the generation time increases linearly. For a
floor plan with less than 10 rooms, our approach can generate a po-
tential design in less than 5ms. Fig. 13 also shows that the increase in
the execution time with an aspect ratio constraint is almost negligible.
This also implies that adding other constraints, e.g. dimensional and
directional constraints, may not significantly impact the generation
speed.

Fig. 7. The closet is adjacent only to the bedroom, which is considered an
isolated room. After converting to the dual graph, the closet corresponds to a
dangling vertex (in red), which will be removed. (For interpretation of the re-
ferences to color in this figure legend, the reader is referred to the web version
of this article.)

1 If this condition does not hold, GADG can still swap this room to the
boundary. However, doing so could significantly alter the adjacency relation in
the PTP.

X.-Y. Wang et al. Automation in Construction 94 (2018) 405–416

410

6. A case study

We have implemented our GADG system using JAVA and Eclipse
SWT Widget. For an input floor plan with dozens of rooms, GADG
generates various alternative layouts within milliseconds. This section
reports the detailed step-by-step result for a case study. The input IFC
file is generated using Autodesk Revit.

We [27] recently enhanced the shape grammar interpreter [29] by
allowing users to import shapes and images and to use colors, among

other enhanced capabilities. The graphical user interface facilitates
users in importing sources and setting rule parameters, as shown in
Fig. 14. In this enhanced interpreter, a dual graph can be generated
from any input according to the adjacency relations of rooms and with
transformation rules applied to the graph. If the graph is a PTP graph,
GADG maps rooms onto the base-layout according to the improved
rectangular dual finding algorithm (see Section 5). The interpreter is
able to accept any parameters for customization and thus generate
layouts to suit a wide range of design requirements. Users are able to

Fig. 8. Generating a PDG from an input PTP.

Fig. 9. Generating a RDG from the PDG and PTP.

X.-Y. Wang et al. Automation in Construction 94 (2018) 405–416

411

specify constraints, e.g. aspect ratio, base-layout size, add/remove
rooms and move rooms, in the pop-up window for controlling the
generated plans with different requirements.

The input floor plan consists of 7 rooms including Hallway, com-
monly seen in modern floor plan libraries as shown in Fig. 16 (a). GADG
first derives the spatial relations of rooms to generate the corresponding
dual graph (Fig. 16 (b)). The RDG checking algorithm is then followed
to check if there exist any RDGs. If so, it generates RDGs, which re-
present floor plans, using the RDG finding algorithm. Otherwise, it re-
ports an error message. Some of the results are reported in Fig. 16 (c).
The generated floor plans hold the same adjacency relationships, yet
with different layouts. In fact, the uncertainty of the four corner vertices
in GADG and the randomness of the room generation process facilitates
to generate a distinct floor plan in each iteration.

With the generated layouts, the designer is able to choose a favored
design for further refinements and/or customization as shown in Fig. 16
(e)~and~(f). The 3D building model for the corresponding floor plan is
shown in Fig. 16 (g).

Assuming that the designer wishes to add a new bedroom into the
design and also requires it to be adjacent to the hallway, he/she may
specify such requirements in the GADG user interface. GADG would
then apply the addition rule to add a new room Bedroom 3, adjacent to

Hallway, into the graph, as shown on the right column of Fig. 16. GADG
may also take a final design as the input to generate more floor plans, in
an unlimited generation-selection-refinement design cycle.

7. Conclusion

This paper has presented a Graph Approach to Design Generation,
GADG, that automatically generates floor plans, whose dual graphs are
PTP graphs. The dual graph of a generated floor plan either conforms to
the dual graph of an input layout or is derived from the input's dual
graph by applying the transformation rules. Two transformation rules,
addition rule and subtraction rule, manipulate rooms on graph struc-
tures according to spatial relations of rooms. GADG is able to generate
numerous floor plans with identical connectivity. The resulting designs

Fig. 10. The first left boundary must be cycle-free.

Fig. 11. Floor plans generated (a) without ratio constraint; (b) with the max-
imum aspect ratio of 2.5.

Fig. 12. Moving an internal vertex to the boundary.

Fig. 13. The execution time for GADG to generate different number of rooms.

X.-Y. Wang et al. Automation in Construction 94 (2018) 405–416

412

are controllable and tractable. Fig. 15 presents more generated floor
plans with different input graphs. Fig. 15 (a) shows input graphs, while
Fig. 15 (b) shows the floor plans generated by GADG.

GADG is a generic framework that may take any types of source files
with proper format conversion, as long as the spatial relations among

rooms are retrievable. Obtaining the spatial relations, the transforma-
tion rules allow users to modify graphs, and associated with floor plans,
as desired. A rectangular dual checking and finding algorithm is used to
generate various floor plans by mapping vertices in a graph to rec-
tangles in accordance with the connectivity among vertices.

Fig. 14. An interface of the enhanced shape grammar interpreter integrated with GADG.

Fig. 15. Floor plans generated by GADG.

X.-Y. Wang et al. Automation in Construction 94 (2018) 405–416

413

Fig. 16. Process of automatic floor plan generation. The left side presents the process of floor plan generation. The right side presents the floor plan generation by
applying the addition rule to add a room Bedroom 3, which is connected to Hallway.

X.-Y. Wang et al. Automation in Construction 94 (2018) 405–416

414

Fig. 16. (continued)

X.-Y. Wang et al. Automation in Construction 94 (2018) 405–416

415

There are of course limitations in the current GADG implementa-
tion. For instance, it is still not straightforward to incorporate practical
constraints. For example, we can only specify the connectivity among
rooms without considering the rooms' directionality. For a large and
complicated layout, it may also be helpful to organize rooms into re-
gions and build a hierarchical dual graph. Furthermore, our current
implementation only generates rectangular rooms from PTP graphs. All
of these limitations provide us exciting new directions for the future
work. Our future plan also includes an extension to generate rooms of
different shapes for any given adjacency graphs. Moreover, using a
hierarchical approach, large-scale buildings and houses can be gener-
ated using the shape grammar approach.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.autcon.2018.07.017.

References

[1] G. Stiny, W.J. Mitchell, The Palladian grammar, Environ. Plann. B. Plann. Des. 5 (1)
(1978) 5–18, https://doi.org/10.1068/b050005.

[2] G. Stiny, W.J. Mitchell, The grammar of paradise: on the generation of Mughul
gardens, Environ. Plann. B. Plann. Des. 7 (2) (1980) 209–226, https://doi.org/10.
1068/b070209.

[3] H. Koning, J. Eizenberg, The language of the prairie: Frank Lloyd Wright's prairie
houses, Environ. Plann. B. Plann. Des. 8 (3) (1981) 295–323, https://doi.org/10.
1068/b080295.

[4] L. Fan, P. Musialski, L. Liu, P. Wonka, Structure completion for facade layouts, ACM
Trans. Graph. (TOG) 33 (6) (2014), https://doi.org/10.1145/2661229.2661265
210:1–210:11.

[5] L. Liu, S. Zlatanova, Generating navigation models from existing building data,
ISPRS Int. Arch. Photogramm. Remote. Sens. Spat. Inf. Sci. XL-4/W4 (4) (2013)
19–25, https://doi.org/10.5194/isprsarchives-XL-4-W4-19-2013.

[6] Y.-H. Lin, Y.-S. Liu, G. Gao, X.-G. Han, C.-Y. Lai, M. Gu, The IFC-based path planning
for 3D indoor spaces, Adv. Eng. Inform. 27 (2) (2013) 189–205, https://doi.org/10.
1016/j.aei.2012.10.001.

[7] J. Bhasker, S. Sahni, A Linear Algorithm to Find a Rectangular Dual of a Planar
Triangulated Graph, Proceedings of the 23rd ACM/IEEE Design Automation
Conference, DAC ’86, IEEE Press, Piscataway, NJ, USA, 1986, pp. 108–114, ,
https://doi.org/10.1145/318013.318031.

[8] J. Bhasker, S. Sahni, A linear time algorithm to check for the existence of a rec-
tangular dual of a planar triangulated graph, Networks 17 (3) (1987) 307–317,
https://doi.org/10.1002/net.3230170306.

[9] A.B. Kahng, Classical Floorplanning Harmful? Proceedings of the 2000
International Symposium on Physical Design, ISPD ’00, ACM, New York, NY, USA,
2000, pp. 207–213, , https://doi.org/10.1145/332357.332401.

[10] P. Galle, An algorithm for exhaustive generation of building floor plans, Commun.
ACM 24 (12) (1981) 813–825, https://doi.org/10.1145/358800.358804.

[11] J. Roth, R. Hashimshony, A. Wachman, Turning a graph into a rectangular floor
plan, Build. Environ. 17 (3) (1982) 163–173, https://doi.org/10.1016/0360-

1323(82)90037-3.
[12] S.M. Leinwand, Y. Lai, An algorithm for building rectangular floor-plans,

Proceedings of the 21st Design Automation Conference, DAC ’84, IEEE Press,
Piscataway, NJ, USA, 1984, pp. 663–664, , https://doi.org/10.1109/DAC.1984.
1585874.

[13] K. Kozminski, E. Kinnen, An Algorithm for Finding a Rectangular Dual of a Planar
Graph for Use in Area Planning for VLSI Integrated Circuits. Proceedings of the 21st
Design Automation Conference, DAC ’84, IEEE Press, Piscataway, NJ, USA, 1984,
pp. 655–656, , https://doi.org/10.1109/DAC.1984.1585872.

[14] P. Wonka, M. Wimmer, F. Sillion, W. Ribarsky, Instant architecture, ACM Trans.
Graph. (TOG) 22 (3) (2003) 669–677, https://doi.org/10.1145/882262.882324.

[15] J. Martin, Procedural House Generation: A Method for Dynamically Generating
Floor Plans, (2006) 10.1.1.97.4544.

[16] F. Marson, S.R. Musse, Automatic real-time generation of floor plans based on
squarified treemaps algorithm, Int. J. Computer Games Technol. 2010 (2010),
https://doi.org/10.1155/2010/624817 7:1–7:10.

[17] P. Merrell, E. Schkufza, V. Koltun, Computer-generated residential building layouts,
ACM Trans. Graph. (TOG) 29 (6) (2010), https://doi.org/10.1145/1882261.
1866203 181:1–181:12.

[18] K. Shekhawat, Algorithm for constructing an optimally connected rectangular floor
plan, Front. Architectural Res. 3 (3) (2014) 324–330, https://doi.org/10.1016/j.
foar.2013.12.003.

[19] G. Stiny, J. Gips, Shape Grammars and the Generative Specification of Painting and
Sculpture, International Federation for Information Processing Congress (2), vol. 2,
1971 ISBN: 0 7204 2063 6.

[20] M. Harada, A. Witkin, D. Baraff, Interactive Physically-based Manipulation of
Discrete/Continuous Models, Proceedings of the 22Nd Annual Conference on
Computer Graphics and Interactive Techniques, SIGGRAPH ’95, ACM, New York,
NY, USA, 1995, pp. 199–208, , https://doi.org/10.1145/218380.218443.

[21] P. Müller, P. Wonka, S. Haegler, A. Ulmer, L. Van Gool, Procedural modeling of
buildings, ACM Trans. Graph. (TOG) 25 (3) (2006) 614–623, https://doi.org/10.
1145/1141911.1141931.

[22] P. Müller, G. Zeng, P. Wonka, L. Van Gool, Image-based procedural modeling of
facades, ACM Trans. Graph. (TOG) 26 (3) (2007), https://doi.org/10.1145/
1276377.1276484.

[23] F. Wu, D.-M. Yan, W. Dong, X. Zhang, P. Wonka, Inverse procedural modeling of
facade layouts, ACM Trans. Graph. (TOG) 33 (4) (2014), https://doi.org/10.1145/
2601097.2601162 121:1–121:10.

[24] J. Lin, D. Cohen-Or, H. Zhang, C. Liang, A. Sharf, O. Deussen, B. Chen, Structure-
preserving retargeting of irregular 3D architecture, ACM Trans. Graph. (TOG) 30
(6) (2011), https://doi.org/10.1145/2070781.2024217 183:1–183:10.

[25] B.K. Sarkar, S.K. Chakraborty, Combinatorics and Graph Theory, PHI Learning,
2016 ISBN: 978-81-203-5173-8.

[26] T. Nishizeki, N. Chiba, Planar Graphs: Theory and Algorithms, vol. 32, Elsevier,
1988, pp. 15–16 Ch. 1 ISBN: 978-91-637-4473-0.

[27] X.-Y. Wang, K. Zhang, Enhancements to a Shape Grammar Interpreter, Proceedings
of the 3rd International Workshop on Interactive and Spatial Computing, IWISC ’18,
ACM, New York, NY, USA, 2018, pp. 8–14, , https://doi.org/10.1145/3191801.
3191805.

[28] K. Maling, W.R. Heller, S.H. Mueller, On Finding Most Optimal Rectangular
Package Plans, Proceedings of the 19th Design Automation Conference, IEEE Press,
Piscataway, NJ, USA, 1982, pp. 663–670, , https://doi.org/10.1109/DAC.1982.
1585567.

[29] T. Trescak, M. Esteva, I. Rodriguez, A shape grammar interpreter for rectilinear
forms, Comput. Aided Des. 44 (7) (2012) 657–670, https://doi.org/10.1016/j.cad.
2012.02.009.

X.-Y. Wang et al. Automation in Construction 94 (2018) 405–416

416

https://doi.org/10.1016/j.autcon.2018.07.017
https://doi.org/10.1016/j.autcon.2018.07.017
https://doi.org/10.1068/b050005
https://doi.org/10.1068/b070209
https://doi.org/10.1068/b070209
https://doi.org/10.1068/b080295
https://doi.org/10.1068/b080295
https://doi.org/10.1145/2661229.2661265
https://doi.org/10.1145/2661229.2661265
https://doi.org/10.5194/isprsarchives-XL-4-W4-19-2013
https://doi.org/10.1016/j.aei.2012.10.001
https://doi.org/10.1016/j.aei.2012.10.001
https://doi.org/10.1145/318013.318031
https://doi.org/10.1002/net.3230170306
https://doi.org/10.1145/332357.332401
https://doi.org/10.1145/358800.358804
https://doi.org/10.1016/0360-1323(82)90037-3
https://doi.org/10.1016/0360-1323(82)90037-3
https://doi.org/10.1109/DAC.1984.1585874
https://doi.org/10.1109/DAC.1984.1585874
https://doi.org/10.1109/DAC.1984.1585872
https://doi.org/10.1145/882262.882324
http://refhub.elsevier.com/S0926-5805(17)31125-1/rf0075
http://refhub.elsevier.com/S0926-5805(17)31125-1/rf0075
https://doi.org/10.1155/2010/624817
https://doi.org/10.1145/1882261.1866203
https://doi.org/10.1145/1882261.1866203
https://doi.org/10.1016/j.foar.2013.12.003
https://doi.org/10.1016/j.foar.2013.12.003
http://refhub.elsevier.com/S0926-5805(17)31125-1/rf0095
http://refhub.elsevier.com/S0926-5805(17)31125-1/rf0095
http://refhub.elsevier.com/S0926-5805(17)31125-1/rf0095
https://doi.org/10.1145/218380.218443
https://doi.org/10.1145/1141911.1141931
https://doi.org/10.1145/1141911.1141931
https://doi.org/10.1145/1276377.1276484
https://doi.org/10.1145/1276377.1276484
https://doi.org/10.1145/2601097.2601162
https://doi.org/10.1145/2601097.2601162
https://doi.org/10.1145/2070781.2024217
http://refhub.elsevier.com/S0926-5805(17)31125-1/rf0125
http://refhub.elsevier.com/S0926-5805(17)31125-1/rf0125
http://refhub.elsevier.com/S0926-5805(17)31125-1/rf0130
http://refhub.elsevier.com/S0926-5805(17)31125-1/rf0130
https://doi.org/10.1145/3191801.3191805
https://doi.org/10.1145/3191801.3191805
https://doi.org/10.1109/DAC.1982.1585567
https://doi.org/10.1109/DAC.1982.1585567
https://doi.org/10.1016/j.cad.2012.02.009
https://doi.org/10.1016/j.cad.2012.02.009

	Customization and generation of floor plans based on graph transformations
	Introduction
	Related work
	Preliminaries
	Transformation rules
	Method
	Dual graph generation from an IFC input
	Removing isolated rooms
	Floor plan generation
	User-specified constraints

	A case study
	Conclusion
	Supplementary data
	References

