
Accelerated Complex-Step Finite Difference for Expedient Deformable
Simulation

RAN LUO, The University of New Mexico, USA
WEIWEI XU∗, State Key Lab of CAD & CG, Zhejiang University, China
TIANJIA SHAO, University of Leeds, United Kingdom
HONGYI XU, Google, Switerzland
YIN YANG, The University of New Mexico, USA

Fig. 1. We present an accelerated complex-step finite difference algorithm, which efficiently computes highly accurate numerical derivative. This method can
be coupled with the Cauchy-Riemann formula to allow us to fully exploit existing (real-valued) linear algebra libraries to evaluate derivatives of tensor-valued
functions. This figure reports an example of designing vibration frequency of a bridge model (21, 414 elements) by changing its geometry. The target frequency
is visualized on a rectangular beam. Given an external force field, the bridge oscillates under the same frequency as the beam model does.

In deformable simulation, an important computing task is to calculate the
gradient and derivative of the strain energy function in order to infer the
corresponding internal force and tangent stiffness matrix. The standard
numerical routine is the finite difference method, which evaluates the target
function multiple times under a small real-valued perturbation. Unfortu-
nately, the subtractive cancellation prevents us from setting this perturbation
sufficiently small, and the regular finite difference is doomed for computing
problems requiring a high-accuracy derivative evaluation. In this paper, we
graft a new finite difference scheme, namely the complex-step finite differ-
ence (CSFD), with physics-based animation. CSFD is based on the complex
Taylor series expansion, which avoids subtractions in first-order derivative
approximation. As a result, one can use a very small perturbation to calculate
the numerical derivative that is as accurate as its analytic counterpart. We ac-
celerate the original CSFD method so that it is also as efficient as the analytic
derivative. This is achieved by discarding high-order error terms, decoupling

∗Corresponding author

Authors’ addresses: Ran Luo, The University of New Mexico, Department of Electrical
and Computer Engineering, 211 Terrace Street NE, Albuquerque, NM, 87122, USA,
luoran@unm.edu; Weiwei Xu, State Key Lab of CAD & CG, Zhejiang University,
China, weiwei.xu.g@gmail.com; Tianjia Shao, University of Leeds, United Kingdom,
t.shao@leeds.ac.uk; Hongyi Xu, Google, Switerzland, hongyixu@google.com; Yin Yang,
The University of New Mexico, Albuquerque, USA, yangy@unm.edu.

ACM acknowledges that this contribution was co-authored by an affiliate of the national
government of Canada. As such, the Crown in Right of Canada retains an equal interest
in the copyright. Reprints must include clear attribution to ACM and the author’s
government agency affiliation. Permission to make digital or hard copies for personal
or classroom use is granted. Copies must bear this notice and the full citation on the
first page. Copyrights for components of this work owned by others than ACM must
be honored. To copy otherwise, distribute, republish, or post, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
© 2019 Association for Computing Machinery.
0730-0301/2019/11-ART160
https://doi.org/10.1145/3355089.3356493

real and imaginary calculations, replacing costly functions based on the
theory of equivalent infinitesimal, and isolating the propagation of the per-
turbation in composite/nesting functions. CSFD can be further augmented
with multicomplex Taylor expansion and Cauchy-Riemann formula to han-
dle higher-order derivatives and tensor-valued functions. We demonstrate
the accuracy, convenience, and efficiency of this new numerical routine
in the context of deformable simulation – one can easily deploy a robust
simulator for general hyperelastic materials, including user-crafted ones
to cater specific needs in different applications. Higher-order derivatives
of the energy can be readily computed to construct modal derivative bases
for reduced real-time simulation. Inverse simulation problems can also be
conveniently solved using gradient/Hessian-based optimization procedures.

CCS Concepts: • Computing methodologies → Physical simulation;
• Mathematics of computing → Numerical analysis; Numerical dif-
ferentiation.

Additional Key Words and Phrases: Physics-based simulation, Deformable
model, Numerical differentiation, Finite difference

ACM Reference Format:
Ran Luo, Weiwei Xu, Tianjia Shao, Hongyi Xu, and Yin Yang. 2019. Ac-
celerated Complex-Step Finite Difference for Expedient Deformable Sim-
ulation. ACM Trans. Graph. 38, 6, Article 160 (November 2019), 16 pages.
https://doi.org/10.1145/3355089.3356493

1 INTRODUCTION
As an essential computing task in physics-based simulation, the
evaluation of various derivatives like total derivative, partial deriva-
tive, directional derivative, second- or high-order derivatives, etc.
often stands out as a significant technical or implementation obsta-
cle. Normally, people incline to infer an exact formula of derivative
functions, which gives the best efficiency and accuracy. However,

ACM Trans. Graph., Vol. 38, No. 6, Article 160. Publication date: November 2019.

https://doi.org/10.1145/3355089.3356493
https://doi.org/10.1145/3355089.3356493

160:2 • Luo et al

there are also many situations where a closed-form expression of
the target function is not available, or deriving its actual derivative
is too involved for just performing preliminary proof-of-concept
trials. The numerical derivative is then preferred.
The commonly used strategy for numerical derivative is the fi-

nite difference method. For instance, the forward difference scheme
estimates the derivative as:

f ′(x0) = lim
∆x→0

f (x0 + ∆x) − f (x0)
∆x

≈
f (x0 + h) − f (x0)

h
, (1)

where a small perturbationh ∈ R is used to approximate lim∆x→0(·).
It appears that the smaller h is, the better approximate Eq. (1) de-
livers. However, we are not allowed to make h arbitrarily small to
improve the precision of Eq. (1). This is because the subtraction
between two nearly equal numbers, such as f (x0 + h) − f (x0) in
Eq. (1) when h is very small, could eliminate many of their signifi-
cant digits and contaminate the result. This issue is often known as
the subtractive cancellation. During the simulation, finite difference
would accumulate numerical errors along the time integration and
crash the solver quickly.
Fortunately, this numerical instability can be averted using the

so-called complex-step finite difference [Abreu et al. 2018; Martins
et al. 2003; Squire and Trapp 1998] or CSFD. The trick is to apply
the perturbation h in the imaginary domain after promoting f to
be a complex function. The subtraction of the first-order terms is
skipped in the complex Taylor expansion [Lyness 1968], and we
can make the perturbation h very small to accurately approximate
the derivative without worrying about the subtractive cancellation.
CSFD allows us to conveniently obtain a highly accurate numerical
derivative without deriving its actual formulation, which could be
otherwise tedious and error-prone.

On the downside, CSFD has several fundamental limitations. First
of all, promoting a real-valued function to be a complex-valued one
induces significant computation overheads. A naïve CSFD imple-
mentation as in existing literature [Martins et al. 2003; Squire and
Trapp 1998] is often orders-of-magnitude slower than the analytic
derivative. Secondly, complex-version Taylor expansion only cir-
cumvents the subtractive cancellation of the first-order derivative.
Second- and higher-order derivatives still suffer with this issue and
cannot be robustly approximated. In many simulation problems, we
also need to deal with tensor functions, whose outputs are based
on complicated numerical routines like Cholesky decomposition
or SVD. Original CSFD becomes awkward as those numerical pro-
cedures are difficult to be explicitly formulated. Promoting such
tensor functions is rather involving, if not impossible. As an echo to
those drawbacks, we augment classic CSFD scheme making it more
efficient, generalizable, and robust. While our extensions utilize
some known techniques like multicomplex number [Fleury et al.
1993; Price 1991] and Cauchy–Riemann equation [Ahlfors 1973],
to the best of our knowledge, we are the first to optimize CSFD
performance making it nearly as efficient as the analytic derivative,
re-engineer it to be a handy off-the-shelf numerical differentiation
solution for physics animation, and thoroughly validate its feasibil-
ity in the context of deformable simulation. Specifically, we would
like to summarize our contributions as follows:

• Analysis CSFD is a relatively new numerical method. We pro-
vide an extensive explanation of its numerical mechanism, error
source, and theoretical foundation.

• Acceleration We systematically optimize the original CSFD
scheme. Without losing accuracy, we obtain multifold speedups,
and our accelerated CSFD is as efficient as the analytic derivative.
This is achieved by discarding high-order error terms, decoupling
real and imaginary calculations, replacing expensive functions
(e.g. trigonometric functions), and isolating the propagation of
the perturbation in composite and nesting functions.

• Adaptation Instead of resorting to high-order Taylor expan-
sion or Fourier expansion, we choose to promote a real-valued
functionwithmulticomplex arithmetic, which leads to amulticomplex-
step finite difference scheme (MCSFD) for high-order finite dif-
ference. Our acceleration techniques naturally synergize with
this generalization. In addition, we leverage the Cauchy-Riemann
formula to further adapt CSFD/MCSFD for tensor functions.

• Application We thoroughly validate CSFD/MCSFD in both
numerical experiments as well as in complicated nonlinear de-
formable simulations. Without knowing the actual formulation
of the internal force and the tangent stiffness matrix, nonlin-
ear deformation can be robustly and accurately simulated with
CSFD/MCSFD. First- and high-order modal derivative bases can
also be constructed for sophisticated materials. Many challeng-
ing inverse simulation problems now can be easily tackled using
standard gradient/Hessian-based optimization approaches such
as the Newton’s method (e.g. see Fig. 1).

2 RELATED WORK
Calculating the differentiation of a function is an important compu-
tational procedure inmany graphics research problems. For instance,
in physics-based animation [Witkin 1997], such as rigid body dy-
namics [Baraff 1989, 1991], fluid/smoke animation [Bridson 2015],
and cloth simulation [Baraff andWitkin 1998; Goldenthal et al. 2007],
etc, the key challenge is to solve the unknown ordinary/partial dif-
ferential equations, and one needs to use numerical approaches to
discretize the differential operation. In computational fabrication,
the optimal design is often obtained via following the gradient direc-
tion of the inverse simulation [Chen et al. 2014; Schulz et al. 2017;
Yan et al. 2018], not to mention a vast volume of research involv-
ing various optimization procedures, many of which rely on the
information of the gradient and/or Hessian of the objective function.
Evaluating the derivative is also a key ingredient in deformable

simulation [Terzopoulos et al. 1987] especially for hyperelastic mod-
els [Bonet and Wood 1997]. Those materials are fully characterized
by the strain energy density E(F) of the local deformation gradient
F. Modeling such materials requires the first- and/or second-order
spatial derivatives of E to establish the equilibrium equation. Dy-
namic simulation can also be casted as an optimization problem of
the variational form [Liu et al. 2013; Stern and Desbrun 2006]. New-
ton’s method [Capell et al. 2002], quasi-Newton method [Liu et al.
2017] or gradient descent method [Wang and Yang 2016] can then
be used when gradient information is provided. The closed-form
formulation of derivatives of E for some materials can be found
in the literature [Bonet and Wood 1997; Sifakis and Barbic 2012;

ACM Trans. Graph., Vol. 38, No. 6, Article 160. Publication date: November 2019.

Accelerated Complex-Step Finite Difference for Expedient Deformable Simulation • 160:3

Smith et al. 2018]. However, for other more complicated models like
phenomenological and user-crafted materials [Koyama et al. 2012;
Martin et al. 2011], obtaining the analytic derivative is non-trivial
and labor-intensive. For principal stretch based nonlinear materials,
such as Ogden and spline-based materials [Xu et al. 2015], careful
numerical thresholding is required, even at the rest configuration,
to obtain the actual tangent stiffness matrix. Deriving those deriva-
tives analytically could be tedious and seemingly unworthy, if the
user just wants to toy with a new hyperelastic energy to see how
it behaves in a given animation scenario. Even with the help of
symbolic differentiation packages like Mathematica [Wolfram et al.
1996] and Maple [Maple 1994], the implementation efforts are still
considerable. Besides, there are also many cases where the target
function’s formulation is not even accessible, and one has to use
the numerical derivative to infer the underlying kinematics [Bar-
bič et al. 2012; Hahn et al. 2012, 2013]. In model reduction, it is
known that linear modes are not sufficient to capture large non-
linear deformation, and the modal derivative [Barbič and James
2005; Yang et al. 2015] should be used. Those derivative modes are
computed through evaluating the third-order gradient of the energy
function (i.e. the Hessian of the internal force), which makes this
technique less popular for more sophisticated materials other than
the St. Venant-Kirchhoff (StVK) model.

The finite difference method is a standard procedure of computing
the numerical derivative [Renardy and Rogers 2006]. Its variances
include forward difference (FD), backward difference (BD), and cen-
tral difference (CD). CD is twice as expensive as FD or BD, but it
is also the most accurate among them. Nevertheless, all of these
schemes suffer from the subtractive cancellation issue: decreasing
the magnitude of the perturbation does not make the finite differ-
ence converging, and the result will oscillate around the correct
value and explode eventually [Brezillon et al. 1981]. This numerical
behavior prevents the adoption of the finite difference method for
applications that are sensitive to the accuracy of the differentiation.

On the other hand, CSFD is a powerful finite difference scheme but
often overlooked in classic numerical analysis textbooks [Squire and
Trapp 1998]. This method is based on the complex version of Taylor
series expansion of a function, which dates back to the 1960s [Lyness
1967]. Unlike regular finite difference method, CSFD obviates the
subtractive cancellation problem (in the first-order approximation)
so that a very small perturbation (e.g. 1.0 × 10−20 or even smaller)
can be used making the resulting derivative approximation highly
accurate. Indeed, we show that CSFD is able to completely replace
the analytic gradient without any accuracy concerns in deformable
simulation. Due to its superior accuracy, CSFD has been gradually
recognized and used for the sensitivity analysis [Anderson et al.
2001; Butuk and Pemba 2003; Montoya et al. 2014; Voorhees et al.
2011]. For nonlinear finite element method (FEM) simulation with
high-order shape functions, CSFD has also been used to obtain the
numerical tangent stiffness matrix [Kim et al. 2011; Lebofsky 2013;
Pérez-Foguet et al. 2000].
Because the target function is promoted to be a complex one, a

naïve implementation of CSFD involves much heavier computations
than the real-valued finite difference. We show that this limitation
can be ameliorated by carefully manipulating the promoted target
function and discarding high-order perturbation terms. Our results

show that we are able to achieve a multifold speedup, making CSFD
nearly as efficient as using the exact derivative. Instead of refer-
ring to the Fourier differentiation [Bagley 2006; Lai and Crassidis
2008], we use the multicomplex-step finite difference [Lantoine et al.
2012] to handle high-order derivative. Doing so allows our accelera-
tion scheme to be seamlessly integrated for high-order numerical
derivatives.

CSFD vs. automatic differentiation. Another relevant and widely
known differentiation technique is the automatic differentiation
(AD) [Griewank and Walther 2008; Nocedal and Wright 2006; Rall
1981], which decomposes complicated functions with the chain rule.
AD has been used in graphics [Grinspun et al. 2003; Guenter 2007;
Mitchell and Hanrahan 1992]. Indeed, the back propagation opti-
mization [Hecht-Nielsen 1992] commonly used for neural network
training is a special implementation of the reverse AD.

A key difference between CSFD and AD lies in the fact that “AD
uses exact formulas along with floating-point values” [Neidinger
2010], and it is “not numerical differentiation” [Baydin and Pearl-
mutter 2014]. CSFD, on the other hand, is a numerical approach
seeking for the derivative approximation. AD is more sensitive to
the smoothness of the function and could fail at discontinuities.
CSFD behaves more robustly in such cases: because the complex
perturbation is orthogonal to the real domain, CSFD always returns
the derivative as long as the target function exists. AD also has prac-
tical difficulties for high-order generalization [Margossian 2018]. For
instance, some existing AD packages (e.g. Adept [Hogan 2014]) only
deals with the first-order derivative. While one may perform first-
order differentiationmultiple times to obtain a high-order derivative,
it has been argued that recursively applying AD leads to inefficient
and numerically unstable code [Betancourt 2018; Margossian 2018].
High-order AD is seldom well supported and could be extremely
slow. On the other hand, MCSFD extension generalizes our accel-
eration scheme to high-order cases with excellent robustness and
accuracy. Our accelerated CSFD/MCSFD is over 30× faster than
commonly used AD packages even for the first-order case. Tensor
functions that involving complicated numerical procedures are also
problematic with AD. It remains unclear if the Cauchy–Riemann
generalization [Ahlfors 1973] can be applied in AD. Our accelerated
CSFD is orthogonal to and complements the AD technique. Because
CSFD is highly accurate (as accurate as the analytic result), it is
possible to harness CSFD/MCSFD for calculating derivatives along
the chain rule that could be otherwise troublesome to AD.

3 BACKGROUND
In order to make the paper more self-contained, we start our discus-
sion with a brief review of the error source of the finite difference
method and the numerical issue of the subtractive cancellation.
Suppose that the function f : R → R is differentiable around

x = x0. After a small perturbation h is applied, it can be Taylor
expanded as:

f (x0 + h) = f (x0) + f ′(x0) · h +
1
2 f

′′(x0) · h
2 + · · ·

= f (x0) + f ′(x0) · h + O(h2),
(2)

ACM Trans. Graph., Vol. 38, No. 6, Article 160. Publication date: November 2019.

160:4 • Luo et al

which leads to the forward finite difference of Eq. (1). Eq. (2) also
suggests that h should be as small as possible for a good approxi-
mation. In the meantime, because the total number of bits used to
represent a real number is limited on a computer, all the floating-
point arithmetics have the round-off error [Ueberhuber 2012], which
is a small relative error also known as machine epsilon ϵ . For the
double precision of IEEE 754 floating-point standard [IEEE 1985],
ϵ ≈ 1.11 × 10−16. Normally, the round-off error does not seriously
impair the stability or the accuracy of a numerical procedure. How-
ever, when h gets smaller, f (x0 + h) and f (x0) become nearly equal
to each other. Subtraction between them would eliminate many
significant digits, and the result after rounding could largely deviate
from the actual value of f (x0 + h) − f (x0).

We elaborate this issue using a simple four-digit decimal floating-
point system. Here, a real number a = 1999.99 is represented as
ã = 1.999 × 103 (because we only have four digits for the mantissa),
and we use (̃·) to denote a digitalized number in a floating-point
system. In this example, we simply choose the round-by-chop rule
that discards all the out-of-precision digits, and the corresponding
round-off error is:

Eround =
|a − ã |

|a |
=

|1999.99 − 1.999 × 103 |
|1999.99| ≈ 4.95 × 10−4. (3)

Next, let b = 1998.88, which is represented as b̃ = 1.998 × 103. The
error of calculating a − b with this toy floating-point system is:

Esubtraction =
|(ã − b̃) − (a − b)|

|a − b |

=
|(1.999 − 1.998) × 103 − (1999.99 − 1998.88)|

|1999.99 − 1998.88|
≈ 0.1.

(4)
We can see from Eqs. (3) and (4) that rounding loses us the least
important significant digit, and it only yields an error at the order
of the floating-point precision (10−4). However, the subtraction
between ã and b̃ eliminates three leading significant digits, which
yields a much more substantial error. If we set b even closer to a
as b = 1999.88, Esubtraction increases to 100% as all the significant
digits are eliminated. This is why the cancellation of subtracting
numbers of similar magnitude is also called catastrophic cancellation.

Some numerical literature (e.g. [Nocedal andWright 2006]) shows
that CD with the form of:

f ′(x0) ≈
f (x0 + h) − f (x0 − h)

2h , (5)

has a better accuracy with a quadratic error, while FD and BD have
an error term of O(h). This conclusion is based on the assumption
that subtractive cancellation does not occur. As to be discussed in
the next section, CD could be even more sensitive to a smaller h
(because of its faster convergent rate).

4 COMPLEX-STEP FINITE DIFFERENCE
CSFD is based on the complex Taylor series expansion [Lyness
1968]. Let (·)∗ denote a complex variable, and suppose f ∗ : C→ C
is differentiable around x∗0 = x0 + 0i . If a perturbation h is applied
at the imaginary domain, f ∗ can be expanded as:

f ∗(x0 + hi) = f ∗(x∗0) + f ∗
′

(x∗0) · hi + O(h
2). (6)

1.00E-16
1.00E-15
1.00E-14
1.00E-13
1.00E-12
1.00E-11
1.00E-10
1.00E-09
1.00E-08
1.00E-07
1.00E-06
1.00E-05
1.00E-04
1.00E-03
1.00E-02
1.00E-01
1.00E+00
1.00E+01
1.00E+02

R
el

at
iv

e
er

ro
r

Perturbation size

 Complex-step finite difference
 Central difference
 Forward difference
 Forward difference (long double)

Fig. 2. We use FD, CD, and CSFD to calculate the first-order derivative
of f (x) = ex /(x 4 + x 2 + 1) at x = 4. The resulting numerical derivative
is compared with the analytic derivative, and the relative error is plotted
against the size of the perturbation, ranging from 2−2 to 2−127.

For any smooth and real-valued function f , we can always lift it
to be a complex one f ∗ by allowing complex input while retaining
its computation procedure unchanged. Under this circumstance,
both f ∗(x∗0) = f (x0) ∈ R and f ∗

′

(x∗0) = f ′(x0) ∈ R do not have
imaginary parts. Taking the imaginary part (i.e. using the opera-
tor Im(·) ∈ R) of both sides of Eq. (6) leads to Im

(
f ∗(x0 + hi)

)
=

Im
(
f ∗(x∗0) + f ∗

′

(x∗0) · hi
)
+ O(h3). We can then have the first-order

CSFD approximation:

f ′(x0) =
Im

(
f ∗(x0 + hi)

)
h

+ O(h2) ≈
Im

(
f ∗(x0 + hi)

)
h

. (7)

Compared with Eq. (1) or Eq. (5), we can see that Eq. (7) does not
have a subtractive numerator meaning it only has the round-off
error regardless of the size of the perturbation h. In addition, the
operation of Im(·) removes the (hi)2 term in Eq. (6), making the
actual approximation error O(h2). Thus, we can employ a very
small h to obtain a highly accurate numerical derivative.
In addition to complex-step finite difference of Eq. (7), it is also

possible to apply the perturbation in the dual domain, which cor-
responds to the dual number method [Fike and Alonso 2011; Fike
2013]. Similar to the complex number, a dual number d = a + bϵ
has a real part a and a dual part bϵ such that ϵ , 0 but ϵ2 = 0.
This property makes all the higher-order terms of ϵ vanished. As a
result, the dual version Taylor expansion of a given function leads
to f (x0 + hϵ) = f (x0) + f ′(x0) · hϵ , and one can obtain the exact
derivative by exacting dual part of f (x0 + hϵ) and setting h = 1 as:
f ′(x0) = Du

(
f (x0 + ϵ)

)
. The question here is how can we evaluate

the dual function f (x0 + ϵ). The literature of dual number arith-
metic is far less extensive than the complex arithmetic. Normally, a
dual function can be evaluated as a dual polynomial [Kramer 1930],
which is based on the analytic derivative f ′(x0). In other words,
the dual number formulation is equivalent to using the analytic
differentiation (because you need to compute f ′(x0) to obtain the
promoted dual function).

ACM Trans. Graph., Vol. 38, No. 6, Article 160. Publication date: November 2019.

Accelerated Complex-Step Finite Difference for Expedient Deformable Simulation • 160:5

Fig. 2 reports a numerical experiment of f (x) = ex /(x4 + x2 + 1).
We compute the first-order numerical derivative at x = 4 using FD,
CD and CSFD. The analytic derivative of this simple function can
be derived as: f ′(x) = (x4 − 4x3 +x2 − 2x + 1)ex /(x4 +x2 + 1)2, and
f ′(4) = 0.006593183194438 is considered as the ground truth. In this
example, both f (x) and f ′(x) are well scaled, and the issue of sub-
tractive cancellation starts to take place when h ≈ 2−26 ∼ 1.0×10−8
with FD andh ≈ 2−17 ∼ 1.0×10−6 with CD.We do see CD converges
faster than FD before hitting the threshold of subtractive cancella-
tion. However, both CD and FD explode quickly after the cancel-
lation occurs. When h becomes smaller than 2−47 ∼ 1.0 × 10−15,
the subtractive cancellation eliminates all the significant digits mak-
ing f (x0 + h) − f (x0) and f (x0 + h) − f (x0 − h) vanished by the
rounding. In this case, we cannot obtain any useful information
of the derivative out of the finite difference approximation, and
the relative error stays 100%. The numerical performance of FD
can be improved by extending the floating number precision. As
indicated in the figure, after doubling the precision from double to
long double (128 bit), the subtractive cancellation is delayed. If we
choose the perturbation size carefully, FD is also able to yield good
accuracy in this particular example. In real applications however, f
often takes a high-dimension vector x as the dependable variable. f
and ∂ f /∂xi may also be badly scaled. These circumstances make
subtractive cancellation happen much earlier. As a result, the nu-
merical derivative of FD and CD is fallible: a conservative h has a big
approximation error, while an aggressive h could be even worse due
to the cancellation. In physics-based simulations, FD/CD is always
problematic and often the demon behind the numerical instability.
On the other hand, CSFD shows a superior performance in terms
of both convergence rate and numerical stability. As CSFD does
not have the subtractive cancellation problem, the relative error
decreases consistently with a smaller h. When h is sufficiently small
(i.e. h < 2−26 ∼ 1.0 × 10−8), CSFD delivers a result with an error
below 1.0 × 10−15. Note that the “ground truth” itself also has a
round-off error at the order of 10−16. In other words, CSFD is as
accurate as the analytic derivative for a sufficiently small h.

Naïve complex promotion. In order to apply CSFD, we must pro-
mote the real function f (x) to be a complex one f ∗(x∗). While the
specific form of f (x) could be complicated, it is always constructed
with binary operators of +, −, ×, ÷ and unary operators including
power function (xa), exponential function (ex), logarithmic func-
tion (lnx), and trigonometric functions (sinx etc.). Promoting these
elementary functions follows the standard complex number arith-
metic [Ablowitz and Fokas 2003]. For a quick reference, we also
list the complex promotion of some commonly used functions in
Appendix A.

If efficiency is not the primary concern, CSFD can be quickly
implemented via overloading existing floating-point arithmetic op-
erators with the corresponding complex version. C++ Template
provides a flexible mechanism for this purpose: one can code f (x)
using a generic data type and choose the complex-type template
specialization when CSFD is needed. Standard C++ STD library has
a collection of stable complex number routines. Besides, there are
also a few third-party opensource complex number libraries such

as Boost [Schäling 2011] and Eigen [Guennebaud et al. 2014]. Nev-
ertheless, such naïve CSFD implementation induces a significant
overhead. In many cases, CSFD runs orders-of-magnitude slower
than the analytic derivative. One of our major contributions is to
optimize CSFD computation to regain the efficiency of the finite
difference. This is to be detailed in the next section.

5 CSFD ACCELERATION
Using general-purpose complex number arithmetic to promote f (x)
is actually “overkill” for just using CSFD to compute numerical
derivatives. We show that CSFD approximation can be substantially
simplified and accelerated, and our accelerated CSFD is as efficient as
using the analytic derivative. Our strategy is based on the following
three important observations:
• According to Eq. (7), it is clear that calculating the real part of f ∗
is unnecessary for CSFD, therefore nearly half of the computation
brought by the complex promotion can be discarded.

• Complex number arithmetic for CSFD is quite different from
a general complex operation. The imaginary part of f ∗ comes
from the applied perturbation hi , which is a very small value (i.e.
h < 1.0 × 10−20). Many calculations can be simplified by treating
h as an infinitesimal: for instance we can have sinh ∼ h to avoid
the expensive evaluation of the trigonometric function of sinh.

• Because h appears as the denominator of Eq. (7), all the quadratic
or higher-order terms of h in Im

(
f ∗(x0 + hi)

)
can be discarded,

which only leads to an approximation error up to O(h).

5.1 Accelerate CSFD of a Single Elementary Function
We start our discussion by assuming that f (x) is an elementary
function (i.e. listed in Appendix A), and take f (x) = x1/m an ex-
ample to show how it can be much more efficiently evaluated for
CSFD. First, the standard complex promotion (Eq. (44)) gives us:

Im
(
f ∗(x0 + hi)

)
h

=
1
h

(
r

1
m · sin ϕ

m

)
. (8)

Here, r (cosϕ + sinϕi) is the polar form of x0 + hi . Recalling that h
is a very small quantity, we have:

sinϕ = h

r
⇒ ϕ =

h

r
, (9)

because ⟨sina ∼ a⟩ is a pair of equivalent infinitesimals when a → 0.
With Eq. (9), the RHS of Eq. (8) can be greatly simplified as:

1
h

(
r

1
m · sin ϕ

m

)
=

1
h

(
r

1
m ·

ϕ

m

)
=

1
h

(
r

1
m ·

h

rm

)
=

r
1
m

rm
. (10)

Table 1. Time statistics of using the optimized CSFD formulations (i.e.
Eqs. (8) and (10)) and the naïve CSFD implementation (Eq. (44)) of the
exponential function f (x) = x 1/m for 100 million times. The computation
time using analytic derivative is also reported for the reference. Our CSFD
simplification is over 200× faster than the naïve implementation. In this
example, it is even faster than using the analytical derivative. The relative
error is at the order of the machine epsilon (10−16).

Eq. (44) Eq. (8) Eq. (10) Analytic
13.1 s 9.49 s (1.4×) 0.056 s (233×) 0.064 s

ACM Trans. Graph., Vol. 38, No. 6, Article 160. Publication date: November 2019.

160:6 • Luo et al

1.00E-16

1.00E-14

1.00E-12

1.00E-10

1.00E-08

1.00E-06

1.00E-04

R
el

at
iv

e
er

ro
r

Perturbation size

Standard CSFD

Accelerated CSFD (Eq. 10)

Fig. 3. Our fast CSFD implementation has good numerical stability and
accuracy. The relative error converges as quickly as the regular CSFD and
remains at the order of machine epsilon after h is sufficiently small.

The performance improvement of Eq. (10) is substantial. We
record the computation time of running Eqs. (44), (8), and (10) re-
spectively as well as directly calculating the analytical derivative of(
x

1
m
) ′
=

1
m
x

1
m −1 for 100 million times on an Intel i7 laptop. The

result is reported in Tab. 1. As expected, we can see from the table
that Eq. (8) modestly improves the calculation efficiency by discard-
ing real part computation. The most significant speedup originates
from equivalent infinitesimal based simplification, which frees us
from performing expensive trigonometric function calculation. In
this example, CSFD is even faster than using analytic derivative
because Eq. (10) has a simpler exponential term of (·)

1
m than the

exponential term in the analytic derivative: (·)
1
m −1. Meanwhile,

our accelerated CSFD retains all the favored advantages of CSFD.
As shown in Fig. 3, fast CSFD implementation has the same con-
vergency and accuracy. For small h, the relative error reaches the
machine epsilon stably. Interestingly, if one further simplifies r such
that r =

√
x20 + h

2 = x0 when h → 0, Eq. (10) converges to the ana-
lytic derivative formulation. This finding reveals that, unlike regular
finite difference, the actual derivative of the function is essentially
hidden in its complex promotion. This is another important reason
that explains why CSFD is able to achieve such high accuracy.

The strategy of leveraging equivalent infinitesimals can be readily
applied to other elementary functions. For instance for trigonomet-
ric functions, the most expensive arithmetic is the evaluation of
e±h . Again, because h is an infinitesimal, we exploit the fact that
⟨e±h ∼ 1 ± h⟩ is also a pair of equivalent infinitesimals. This simpli-
fication brings another orders-of-magnitude speedup.

5.2 Accelerate CSFD of Composite Binary Operators
In reality, f (x) houses a chain of binary operators such that:

f (x) = f1(x) ◦ f2(x) ◦ f3(x) ◦ · · · ◦ fk (x) ◦ · · · ◦ fN (x), (11)

for ◦ ∈ {+,−,×,÷}. Each fk (x) could also be a nesting composite of
multiple unary functions: fk (x) = fk ,1(fk ,2(fk ,3(...))). We defer the
discussion of nesting operators to the next subsection and assume
that the promoted form of each function along the chain is known.
Eq. (11) may be split into several sub-chains according to the

parenthesization and operator priority. For instance, the example
used in Fig. 2 can be understood as f (x) = f1(x)/

(
f2(x) + f3(x) +

∗(∗)

1 1

1 2 1 2 1 2 1 2

1 2 … −1 , 1 2 … −1 , 1 2 … −1…

…

= 0

= 1

= 2

=

00 … 00 00 … 01 11 … 11

Fig. 4. The procedure of evaluating a chain of multiplications (and divisions)
can be visualized with a binary tree. The leaf nodes can be concisely encoded
by a binary number. As a result, we can discard higher-order infinitesimals
with two or more 1s (e.g. 011) at the bottom level.

f4(x)
)
, where f1(x) = ex is an exponential function; f2(x) = x4 and

f3(x) = x2 are power functions; and f4(x) = 1 is a constant. If a
sub-chain only consists of addition and subtraction operators, which
are independent for real and imaginary parts, we just evaluate the
imaginary part of each promoted function f ∗k along the chain for
CSFD approximation and ignore the calculation for the real part.
However, if the sub-chain is concatenated with multiplication

and/or division operators, we cannot discard the real part of each
function because the real and imaginary parts are coupled in the
multiplication operation – one can easily verify that the imaginary
part of f ∗1 (x

∗) · f ∗2 (x
∗) contains the information of both real and

imaginary parts of f ∗1 (x
∗) and f ∗2 (x

∗). Division is similar, which is
regarded as the multiplication of the conjugate of the dividend.
We show that evaluating a multiplication chain can also be sig-

nificantly accelerated based on a binary branching strategy. Let
f ∗k (x

∗) = ak + bk denote a promoted function on the chain, where
bk is an imaginary quantity. Our base case is the chain of a sin-
gle promoted function f ∗(x∗) = f ∗1 (x

∗) = a1 + b1 with two ad-
dends. Putting an additional multiplying function after it leads to
f ∗(x∗) = f ∗1 (x

∗) · f ∗2 (x
∗) = (a1 +b1)a2 + (a1 +b1)b2. In other words,

each item of a1 and b1 is multiplied by a2 and b2 respectively. The
multiplication of f ∗2 (x

∗) thus doubles the total number of addends.
This procedure can also be visualized with a binary tree shown in
Fig. 4. Each complex function f ∗k (x

∗) along the chain increments the
height of the tree by one, and we have 2N addends at the bottom
level for a chain of N functions. Recall that imaginary parts of bk
correspond to a very small perturbation bk = hi ∼ 0, and we can
discard all addends that are quadratic or higher-order of bk . The
key question here is how can we directly identify those addends
without actually expanding the multiplication chain?

From Fig. 4, we can see that each extra multiplication induces
a binary branch towards the next level. A left branch appends an
ak after an existing addend while a right branch appends a bk .
The final form of a leaf addend depends on how many left and
right branches at which levels it takes along the path from the root.
Clearly, the leftmost and rightmost leaves are alwaysa1a2...aN−1aN
and b1b2...bN−1bN . The second leftmost leaf differs from the left-
most one because it takes a right branch at the last level. Accordingly,
its final form becomes a1a2...aN−1bN . Interestingly, this branching
mechanism mimics the ripple-carry addition of binary numbers. If
we encode ak with 0 and bk with 1, all the addends at the bottom
level, from left to right, can be concisely represented as a sequence

ACM Trans. Graph., Vol. 38, No. 6, Article 160. Publication date: November 2019.

Accelerated Complex-Step Finite Difference for Expedient Deformable Simulation • 160:7

of binary numbers B0,B1,B2, ...,B2N −1 such that Bk = (k)binary is
the binary representation of the decimal index k . For instance, if we
have three functions along the chain, the eight leaf addends from
B0 to B7 are: 000, 001, 010, 011, 100, 101, 110 and 111. The number of
ones in Bk implies the order of h. Since anything higher-order than
h2 can be safely discarded, we only sum up addends with exact one
1-digit (the leftmost leaf is a real number, which is also discarded)
such that: Im

(
f ∗(x∗)

)
= a1a2b3 + a1b2a3 + b1a2a3 + O(h2). From

Eq. (6), we can also understand that f (x0) = Re
(
f ∗(x0+hi)

)
+O(h2)

meaning replacing ak by fk (x) only induces an approximation error
of O(h2). As a result, we can stick with our acceleration strategy
of ignoring the real part of a promoted function. If a long multipli-
cation chain is identified (e.g. more than 10 multiplicands) whose
derivative is to be evaluated via CSFD, we also pre-compute the
product among all the ak as:

A = ΠN
k=1ak = ΠN

k=1 fk (x) + O(h
2). (12)

Therefore, a leaf node, say a1b2a3 for instance, can be efficiently
computed at O(1) time as:

a1b2a3 = Re
(
f ∗1 (x

∗)
)
·Im

(
f ∗2 (x

∗)
)
·Re

(
f ∗3 (x

∗)
)
≈

A

f2(x)
·Im

(
f ∗2 (x

∗)
)
.

(13)
Note that using Eq. (12) potentially brings us the division-by-zero
issue if fk (x) is zero or close to zero. This risk can be avoided by
rolling back to the standard formula of a1b2a3 instead of Eq. (13),
if f2(x) is found smaller than a given threshold (say 1.0 × 10−16).
The timing benchmark shows that our strategy brings CSFD ap-
proximation an additional 5× boost. After the value of each fk (x)
is computed, the naïve implementation uses 21ms to calculate the
first-order CSFD derivative for N = 100 , while our method only
needs 4ms on an i7 laptop.

5.3 Accelerate CSFD of Composite Unary Operators
Real-world functions may also be in a nesting form of multiple
unary operators:

f (x) = fN (fN−1(fN−2(· · · f2(f1(x))))), (14)
where each fk for 1 ≤ k ≤ N could be a power, exponential, log-
arithmic, or trigonometric function. We stick with the notation
of f ∗k (x

∗) = ak + bk , where bk is an imaginary quantity, and
x0 + hi = a0 + b0 is the input of f ∗1 i.e. the innermost function.
Note that the CSFD approximation of f ′(x) is actually the ratio
between bN and b0:

f ′(x) ≈
Im

(
f ∗N

)
h

=
Im

(
f ∗N

)
i

hi
=

Im
(
aN + bN

)
i

hi
=
bN
b0
. (15)

Similar to the multiplication case, the real and imaginary parts of an
outer function are also coupled with the input real and imaginary
parts from its inner function. The algebraic relation between bN
and b0 could be complicated, and expanding the entire composite
equation to compute the actual value of bN is expensive.

Fortunately we notice that in order to compute f ′(x) with CSFD,
only the ratio between bN and b0 is needed, and their exact values
are of less interest. Therefore, we convert bN /b0 to be:

bN
b0
=
b1
b0

·
b2
b1

·
b3
b2

· ... ·
bN
bN−1

. (16)

A multiplicand in RHS of Eq. (16), bk/bk−1, describes how the imag-
inary perturbation is changed through f ∗k . An important obser-
vation here is the imaginary part of a promoted function remains
infinitesimally small after being applied with an infinitesimal imagi-
nary perturbation. This can be easily verified by the complex Tay-
lor expansion: f ∗(x0 + hi) ≈ f ∗(x∗0) + f ∗

′

(x∗0) · hi , which leads to
Im

(
f ∗(x0 + hi)

)
≈ f ′(x0) · h = O(h) ∼ h. In other words, all the bk

in Eq. (16) are small imaginary perturbations of the same order of hi .
Therefore, we re-set each intermediate perturbation of bk−1 as h. In
the meantime, its real part input ak−1 can be efficiently computed
as fk−1 without resorting to f ∗k−1 as:

bk
bk−1

=
Im

(
f ∗k (ak−1 + bk−1)

)
i

bk−1

≈
Im

(
f ∗k (ak−1 + hi)

)
h

≈
Im

(
f ∗k (fk−1 + hi)

)
h

.

(17)

Eq. (17) literally breaks the coupling of the imaginary parts along
the nesting chain – when computing bk/bk−1, the actual imaginary
values from inner functions are not required, and the propagation
of the initial imaginary perturbation b0 = hi is isolated.

Discussion. Eq. (16) should look immediately similar to the chain
rule, which forms the foundation of AD techniques. Indeed, one may
also understand Eq. (17) as breaking Eq. (14) using the chain rule
and applying CSFD to approximate each intermediate derivative af-
terwards (i.e. by setting bk−1 = hi and ak−1 = fk−1). In other words,
Eq. (16) is practically equivalent to augmenting AD with accelerated
CSFD without referring to differentiation rules. Regular AD pack-
ages (e.g. CppAD [Bell 2012] and Adept [Hogan 2014]) mainly aim on
first- or second-order derivatives, and their generalization to high-
order derivative is nonintuitive and inefficient, if not impossible.
However, as we will see in the next section, CSFD can be elegantly
generalized to handle high-order derivatives. All the acceleration
techniques discussed in this section are naturally inherited.

6 MULTICOMPLEX-STEP PERTURBATION
Regular finite difference evaluates high-order derivative by recur-
sively applying the first-order approximation of Eq. (1). For instance,
the second-order derivative is approximated as:

f ′′(x0) =
f (x0 + h) − 2f (x0) + f (x0 − h)

h2
+ O(h2), (18)

which requires two extra function evaluations for both f (x0 + h)
and f (x0 − h). The complex Taylor series expansion of Eq. (6) gives
a real second-order term (with a factor of i2), which yields:

f ′′(x0) =
2
(
f (x0) − Re

(
f ∗(x0 + hi)

))
h2

+ O(h2). (19)

Eq. (19) only needs one extra function evaluation of f ∗(x0 + hi): its
imaginary part can be used for the first-order CSFDwhile its real part
is being used for the second-order CSFD. However, both schemes
suffer with the subtractive cancellation. Besides, computing f ∗(x0 +
hi) could be even slower than computing both f (x0+h) and f (x0−h)
due to the extra complexity induced by the promotion. Therefore,
second-order CSFD is less appealing to us. A more numerical stable
approach is based on Fourier differentiation [Bagley 2006], which

ACM Trans. Graph., Vol. 38, No. 6, Article 160. Publication date: November 2019.

160:8 • Luo et al

generalizes the complex Taylor expansion to Fourier expansion by
not retaining the perturbation on the imaginary axis:

f ∗(x0+he
θ i) = f ∗(x∗0)+ f

∗′(x∗0) ·he
θ i + f ∗

′′

(x∗0) ·
h2

2 e2θ i · · · . (20)

High-order derivative can be computed by using different argument
angles of θ to cancel out unwanted terms. For instance, setting
θ = π/4 and π + π/4 leads to one possible second-order approxima-
tion [Lai and Crassidis 2008]:

f ∗
′′

(x∗0) =
Im

(
f ∗(x0 + h · i

1
2) + f ∗(x0 − h · i

1
2)
)

h2
+ O(h2). (21)

While Fourier differentiation may be able to avoid the subtractive
cancellation with a carefully chosen θ , its formulation is quite dif-
ferent from the first-order CSFD1. In practice, users have to use
distinct implementations for different differentiation orders, and
most calculations among them cannot be shared.
Alternatively, there is a more concise formula that generalizes

the perturbation to be a multicomplex quantity, and we refer to
this method as multicomplex-step finite difference (MCSFD). The
detailed derivation of MCSFD formulation can be found in existing
literature [Lantoine et al. 2012; Nasir 2013]. MCSFD extends the reg-
ular complex number to havemultiple mutual-orthogonal imaginary
directions. The most attractive feature of multicomplex number to
us is it can be defined recursively: its base cases are the real number
R and the regular complex number C, which are considered as zero-
and first-order multicomplex sets C0 and C1. C1 extends the real
set (C0) by adding an imaginary unit i as: C1 = {x + yi |x,y ∈ C0},
and the multicomplex number up to an order of n is defined as:

Cn =
{
z1 + z2in |z1, z2 ∈ Cn−1

}
. (22)

The order of a multicomplex number matches the number of its
imaginary directions, and all the imaginary units in have the prop-
erty of i2n = −1. Fully expanding the recurrence of Eq. (22) yields:

Cn = x0 + x1i1 + x2i2 + · · · + xnin
+x1,2i1i2 + · · · + xn−1,nin−1in
+x1,2,3i1i2i3 + · · · + xn−2,n−1,nin−2in−1in
...

+x1,2, ...,ni1i2 · · · in,

(23)

where all of x0, x1, ..., xn , x1,2, x2,3, ..., xn−1,n , ..., x1,2, ...,n are real
coefficients. For instance, settingn = 2 leads toC2 = x0+x1i1+x2i2+
x1,2i1i2. A Cn number has 2n x-coefficients: one x0 for the real part,
n coefficients x1, x2, ..., xn for a single imaginary direction. All the
other coefficients are formixed imaginary directionswithmultiple i j .
Unlike quaternion [Shoemake 1985], the product between different
imaginary units is commutative such that i j · ik = ik · i j for j , k .

1The fact is Fourier differentiation still has the subtractive cancellation issue. Explicitly
avoiding the subtraction is not a real cure of cancellation. This is out of scope of this
paper, but numerical experiments clearly verify this.

Following the formulation in [Lantoine et al. 2012], the Taylor
series expansion of f ⋆ under a multicomplex perturbation is:

f ⋆(x0 + hi1 + · · · + hin) = f ⋆(x0) + f ⋆(1)(x0) · h
n∑
j=1

i j

+
f ⋆(2)(x0)

2 · h2
©«
n∑
j=1

i j
ª®¬
2

+ · · · +
f ⋆(n)

n! · hn
©«
n∑
j=1

i j
ª®¬
n

+ · · · .

(24)

Here, f ⋆(n) is the n-th-order derivative of f ⋆.
(∑

i j
)k can be ex-

panded following the multinomial theorem, and it contains products
of mixed k imaginary directions for the k-th-order term. We refer
the reader to [Lantoine et al. 2012; Nasir 2013] for a detailed step-
by-step derivation. Because

(∑
i j
)k
,

(∑
i j
)l for k , l , Eq. (24)

allows us to approximate an arbitrary-order derivative by directly
extracting the corresponding imaginary combination, just as we
did in CSFD. In order to do so, Im

(
·
)
should also be generalized to

Imκ
(
·
)
to handle multiple imaginary directions:

Imκ (z) = xκ ∈ R, (25)

which picks a coefficient xκ that matches the imaginary combination
of κ (i.e. the subscripts combination of i j).

The MCSFD approximation of the n-th-order derivative can then
be concisely formulated as:

f (n)(x0) =
Im(n)

(
f ⋆(x0 + hi1 + hi2 + ... + hin)

)
hn

+ O(h2). (26)

Similarly, n-th-order partial derivative can be approximated as:

∂n f (x1, · · · , xp)

∂xk11 · · · ∂x
kp
k

≈
Im(n)

(
f ⋆(x1 + h

∑
j ∈Π1 i j , · · · , xp + h

∑
j ∈Πp i j)

)
hn

,

(27)
where Im(n) = Im1,2, ..,n is a shortcut notation, which picks the
coefficient of the mixed imaginary direction of i1i2 · · · in . Πj ={ j−1∑
l=1

kl + 1, · · · ,
j∑

l=1
kl

}
. By setting n = 2 in Eqs. (26) and (27), ele-

ments of the Hessian matrix (of a function f (x,y) : R2 → R) can
be easily obtained as:

∂2 f (x,y)

∂x2
≈

Im(2)
(
f (x + hi1 + hi2,y)

)
h2

,

∂2 f (x,y)

∂y2
≈

Im(2)
(
f (x,y + hi1 + hi2)

)
h2

,

∂2 f (x,y)
∂x∂y

=
∂2 f (x,y)
∂y∂x

≈
Im(2)

(
f (x + hi1,y + hi2)

)
h2

.

(28)

The most pleasing advantage of MCSFD to us is its handy im-
plementation. As long as CSFD is implemented, all the routines for
CSFD can be recursively used for MCSFD. More importantly, all
the acceleration techniques discussed in Sec. 5 are also inherited
with MCSFD. The numerical performance of MCSFD is excellent as
reported in Fig. 5, where we evaluate the second-order derivative
of f (x) = ex /(x4 + x2 + 1) at x = 4, the same example used in
Fig. 2. The actual derivative f ′′(x) = (x8 − 8x7 + 22x6 − 12x5 +

ACM Trans. Graph., Vol. 38, No. 6, Article 160. Publication date: November 2019.

Accelerated Complex-Step Finite Difference for Expedient Deformable Simulation • 160:9

1.00E-16
1.00E-15
1.00E-14
1.00E-13
1.00E-12
1.00E-11
1.00E-10
1.00E-09
1.00E-08
1.00E-07
1.00E-06
1.00E-05
1.00E-04
1.00E-03
1.00E-02
1.00E-01
1.00E+00
1.00E+01

R
el

at
iv

e
er

ro
r

Perturbation size

Finite difference

Complex-step finite difference

Multicomplex-step finite difference

Fig. 5. The performance of MCSFD approximation. We use the same test
function of f (x) = ex /(x 4+x 2+1) as in Fig. 2 and calculate its second-order
derivative at x = 4. The relative error w.r.t to value of analytic derivative is
plotted against the size of the perturbation, ranging from 2−2 to 2−63.

21x4 − 12x3 − 4x2 − 4x − 1)ex /(x4 + x2 + 1)3 is used as the refer-
ence. In this example, second-order finite difference (Eq. (18)) has a
similar behavior of its first-order counterpart. After h hits a certain
threshold (∼ 1.0 × 10−13), the subtractive cancellation makes the
numerator a numerical zero leading to a 100% relative error. The
second-order CSFD approximation of Eq. (19) also suffers from this
issue. MCSFD however, accurately approximates the second-order
derivative. With a sufficiently small h, the relative error becomes
comparable to the machine epsilon, and the approximation can be
used to fully replace the analytic derivative.

7 TENSOR FUNCTION
Most examples we have discussed so far are real functions taking a
single real-valued input. In many simulation problems, however, we
deal with functions with a tensor input. If we know how each com-
ponent of the input tensor contributes to the output, we can simply
overload the corresponding calculation to evaluate the promoted
function value. For instance, f (X) : RN×N → R = |X|F returns
the Frobenius norm of the input matrix X. As we know the exact
form of this function is: f (X) =

√∑∑
X 2
i , j , evaluating the partial

derivative of ∂ f (X)/∂Xi , j is nothing more than fixing unrelated
tensor components to pose f as a scalar-input function.
However, there are also many functions that do not rely on an

explicit formulation such as the one solving an input linear system:

f (X) : RN×N → RN = X−1a. (29)
The exact inverse of a high-dimension matrix X is seldom given
analytically. Instead, appropriate numerical routines like LU decom-
position and forward-backward substitution are used to retrieve the
function output. It is difficult for us to apply CSFD or MCSFD pro-
motions without altering the underlying implementation of those
numerical procedures.

An important advantage of CSFD/MCSFD is that one can exploit
the Cauchy-Riemann (CR) formulation [Ahlfors 1973] to achieve
(multi-)complex perturbations without overloading the complex

arithmetic. CR form represents a multicomplex number in the form
of a real matrix. Suppose z1 = z00 + z

0
1i , its CR form is a 2× 2 matrix:

z1 = z00+z
0
1i =

[
z00 −z01
z01 z00

]
, where z1 ∈ C1 and z00, z

0
1 ∈ C0 = R.

Here, we use the superscript (·)n to denote the order of a multicom-
plex number. The CR matrix of zn can be constructed recursively
using the CR matrices of zn−10 and zn−11 following the definition of
the multicomplex number (Eq. (22)) as:

zn = zn−10 + zn−11 in ∈ Cn =

[
zn−10 −zn−11
zn−11 zn−10

]
. (30)

Each of the 2 × 2 blocks in Eq. (30) is a (n − 1)-order multicomplex
number, which can be further expanded with (n − 2)-order multi-
complex numbers and so on. Eventually, the CR form of zn becomes
a 2n × 2n real matrix.

CR form can also be generalized for tensors i.e. z00 and z
0
1 can be

real-valued tensor quantities. As a result, f (X) of Eq. (29) can be
promoted as:

f ∗(X∗) =

[
Re

(
X∗

)
−Im

(
X∗

)
Im

(
X∗

)
Re

(
X∗

)]−1 [
Re

(
a∗
)

−Im
(
a∗
)

Im
(
a∗
)

Re
(
a∗
)]
. (31)

Because all the tensors are now real quantities, Eq. (31) can be
evaluated without involving any complex number calculations. The
resulting function value is also the CR form of f ∗(X∗), and we
can extract its imaginary values from off-diagonal blocks. Fig. 6
reports another numerical experiment of using CR form to calculate
first-order and second-order derivative of the inverse of a 3 × 3
matrix: f (X) = X−1 ∈ R3×3 w.r.t X2,2 (i.e. the element resides at the
second row and second column of X). In this example, we generate
a random 3× 3 non-singular matrix, and compute its inverse matrix
analytically. The exact formulation of the first-order and second-
order derivative of matrix inverse is:
∂ f

∂X2,2
= −X−1 ∂X

∂X2,2
X−1,

∂2 f

∂X 2
2,2
= −2X−1 ∂X

∂X2,2
X−1 ∂X
∂X2,2

X−1,

and it is used as the reference.
The relative error of the numerical derivative computed using

CR form as well as using the finite difference is plotted. We can
see from Fig. 5 that CR form based CSFD and MCSFD also have
excellent accuracy, while the regular finite difference still suffers
with the subtractive cancellation.

8 EXPERIMENTAL RESULTS
We implemented CSFD/MCSFD on a desktop computer with an
Intel i7 8700K CPU and 32 GB memory. Both regular complex
arithmetic and the generalized multicomplex arithmetic were im-
plemented using C++ double precision (64 bit on a x64 computer).
While we believe CSFD/MCSFD will be useful for many graphics
problems, in this paper we demonstrate its applications in mod-
eling and simulating elastic objects. Unless specified, we set h as
1.0 × 10−40 in our experiments. Our general observation is that
one can fully rely on CSFD/MCSFD-based derivative without any
accuracy concerns. Performance-wise, accelerated CSFD/MCSFD
is almost as efficient as analytic derivatives. We also compared
CSFD/MCSFD with some widely used AD packages. While both

ACM Trans. Graph., Vol. 38, No. 6, Article 160. Publication date: November 2019.

160:10 • Luo et al

1.0E-16
1.0E-14
1.0E-12
1.0E-10
1.0E-08
1.0E-06
1.0E-04
1.0E-02
1.0E+00
1.0E+02
1.0E+04
1.0E+06
1.0E+08
1.0E+10
1.0E+12
1.0E+14

R
el

at
iv

e
er

ro
r

Perturbation size

Cauchy-Riemann 1st
Cauchy-Riemann 2nd
Finite difference 1st
Finite difference 2nd

Fig. 6. Cauchy-Riemann formula allows us to use existing linear algebra
libraries to compute high-order numerical derivative without referring to
an explicit complex promotion. In this example, we compute the first- and
second-order derivative of 3 × 3 matrix inverse. CR-form based CSFD and
MCSFD still have excellent accuracy compared with regular finite difference.

CSFD/MCSFD and AD produce accurate results in well-conditioned
problems, CSFD/MCSFD excels at its robustness for nonsmooth
functions, high-order generalization, and tensor extension. Accel-
erated CSFD/MCSFD is also much faster: it is over 20× faster than
C++ based AD packages and ∼ 300× faster than Python based AD
packages.

Table 2. Time statistics of computing first- (1st), second- (2nd), and third-
order (3rd) derivatives for 1 million times of the function: f (x) = ex /(x 4 +
x 2 + 1) using CSFD/MCSFD and some popular AD packages.

CSFD Adept (s) CppAD (s) ADOL-C (s) ad (s)
1st 114ms 11.1 (97×) 8.2 (72×) 1.4 (13×) 72.1 (632×)
2nd 242ms NA 11.2 (49×) 5.9 (24×) 80.3 (332×)
3rd 768ms NA NA 51 (62×) NA

Comparison with AD packages. In the first experiment, we would
like to examine the efficiency of our accelerated CSFD/MCSFD as
well as some widely used AD packages including Adept [Hogan
2014], CppAD [Bell 2012], ADOL-C [Griewank et al. 1996], and ad [Lee
2013]. The first three libraries are in C++, and ad is a famous Python
package. We record the time performance for evaluating derivatives
(for 1 million times) of the function: f (x) = ex /(x4 + x2 + 1) at
x = 4 (i.e. the one used in Figs. 2 and 5). The computation time
for the analytic first- and second-order derivatives is 104ms and
238ms respectively, which is quite close to our CSFD/MCSFD tak-
ing 114ms and 242ms . This function is smooth and differentiable,
and all AD packages return accurate first-order derivative results
successfully. Yet, our method is massively faster than AD packages
as reported in Tab. 2. In general, the accelerated CSFD/MCSFD is
dozens times faster than C++ based AD packages and hundreds times
faster than Python based ones. In this experiment, Adept does not
support second-order derivative natively. CppAD and ad only sup-
port high-order derivative up to the second order. ADOL-C is the

Table 3. Computing the internal force and tangent stiffness matrix for 10k
linear tetrahedral elements of StVK and Neo-Hookean materials. Similar to
Tab. 2, our accelerated CSFD/MCSFD is much faster than AD packages.

CSFD Adept (s) CppAD (s) ADOL-C (s) ad (s)
StVK 1st 9ms 1.1 (122×) 0.8 (90×) 0.7 (78×) 7.1 (786×)
StVK 2nd 101ms NA 5.4 (54×) 5.2 (52×) 29 (288×)
NH 1st 12ms 1.2 (99×) 0.8 (66×) 0.8 (65×) 7.2 (580×)
NH 2nd 117ms NA 5.6 (48×) 5.7 (49×) 31 (268×)

most sophisticated package, which has dedicated sub-routines for
second-order and high-order derivatives. Nevertheless, it is still
more than one order slower than our method. ADOL-C becomes even
slower for higher-order derivatives as it calls the first-order routine
repeatedly for high-order cases (i.e. with its forward() routune).
Python package is the slowest.
We also assess the robustness of AD packages for nonsmooth

functions. Consider f (x) = log2
(
1 −

√
(x − 1)2

)
. Its analytic first-

and second-order derivative can be easily derived as:

f ′(x) = −

2(x − 1) log
(
1 −

√
(x − 1)2

)(
1 −

√
(x − 1)2

) √
(x − 1)2

, (32)

and

f ′′(x) = −

2
(
log

(
1 −

√
(x − 1)2

)
− 1

)
(
1 −

√
(x − 1)2

)2 . (33)

We notice thatx = 1 is actually a singular point of the function.With-
out explicitly cancelling out

√
(x − 1)2 from Eqs. (32) and (33), AD

packages that overload elementary arithmetic with differentiation
rules tend to yield the division-by-zero error2. In this experiment,
only Adept successfully returns the first-order derivative of this
function, but It yields a #IND error for the second-order case. All
other AD packages return either NaN, #IND, or ZeroDivisionError
error. On the other hand, CSFD/MCSFD robustly handle this func-
tion derivative without any special treatments.

We observe similar results when applying CSFD/MCSFD and AD
in deformable simulation computations. Tab. 3 lists the time perfor-
mance of computing the internal force and tangent stiffness matrix
for 10k linear tetrahedral elements of StVK and Neo-Hookean mate-
rials, which are the first- and second-order partial derivatives of the
energy function. The analytic formulations of those two energies
are known. We use Vega library [Barbič et al. 2012] to compute the
analytic force and stiffness matrix. For the StVK material, it takes
11.8 ms and 103.5 ms for the first- and second-order derivatives.
For the Neo-Hookean material, the computation time is 12.1 ms
and 112.5 ms respectively. This performance measure is close to
our accelerated CSFD and MCSFD as shown in the table. In this
experiment, most AD packages deliver correct results (expect for
Adept) but they are all much slower than accelerated CSFD and
MCSFD. It is also common, in practice, to resort to symbolic dif-
ferentiation tools like Mathematica or Maple. For instance, Maple
2Wemay be able to avoid this numerical instability of AD by expanding and simplifying
the derivative function. But if we choose to do so, we are literally deriving the analytic
formula of the derivative function, and why do we bother to use AD?

ACM Trans. Graph., Vol. 38, No. 6, Article 160. Publication date: November 2019.

Accelerated Complex-Step Finite Difference for Expedient Deformable Simulation • 160:11

Analytic Newton MCSFD Newton CSFD Newton PCG Gradient descent Finite difference

Fig. 7. The Armadillo model falls quickly and hits a glassy rod. Due to the sharp collision, gradient descent method [Wang and Yang 2016] yields artifact
because the residual is not sufficiently reduced. Regular finite difference method crashes instantly. Newton’s method with MCSFD-based Hessian yields the
same result as using the analytic Newton. Newton-PCG with CSFD-based directional derivative also has the same result.

Fig. 8. We simulate a Neo-Hookean Armadillo model using Newton’s
method. The Armadillo has 69, 074 elements. The gradient and Hessian
of the target function f (i.e. Eq. (35)) is approximated using numerical
CSFD/MCSFD. The result is identical to the one computed using analytic
gradient and Hessian.

package takes ∼ 1.5 s to yield the symbolic formulation of the first-
order energy gradient for the StVKmodel, which consists of over 800
terms. Clearly, without further simplifications, directly importing
them to the simulator is redundant and inefficient.

8.1 Application I: Accurate Nonlinear Optimization
Dynamic simulation of a deformable object requires solving a non-
linear system of the force equilibrium. For instance, the implicit
Euler time integration scheme leads to:

M
(
un+1 − un − ∆t Ûun

)
= ∆t2

(
fint (un+1) + fext

)
, (34)

where M is the mass matrix. fint and fext stand for the elastic in-
ternal force and the external force. The subscript (·)n denotes the
time integration step, and ∆t is the time step size. un+1 is the un-
known displacement vector we want to compute. This equilibrium
is often treated as an optimization problem known as its variational
form [Liu et al. 2013; Stern and Desbrun 2006] of:

argmin
u

f (u), f (u) =
1
∆t2

M 1
2 (u − u∗)

2 + E(u), (35)

where u∗ = un+∆t Ûun+h2M−1fext is a known vector. E is the nonlin-
ear elastic energy. Eq. (35) can be solved using the classic Newton’s
method, which approximates f (u) with a quadratic form and cal-
culates an incremental improvement of ∆u as ∆u = −H · ∂ f /∂u.
Matrix H is the Hessian matrix, and it is the second-order partial
derivative of f : H = ∂2 f /∂u2. We simulate nonlinear dynamics of
a Neo-Hookean Armadillo (with 69, 074 elements) using Newton’s
method and drag its mouth back and forth. The gradient and Hes-
sian of f are approximated with CSFD/MCSFD. The elastic energy
density E of the Neo-Hookean material is

ENH = λ(J − 1)2 + µ(J−2/3I1 − 3), (36)

where J = |F| is the determinant of the deformation gradient F, and
I1 = tr(F⊤F). λ and µ are Lamé constants. In our CSFD/MCSFD
implementation, we treat E as a nested composite function ENH =

E1(J (F)) + E2(I1(F)). Snapshots of the deformed Armadillo are re-
ported in Fig. 8. This animation is identical to the one obtained using
analytic gradient and Hessian.

Alternatively, one may also use the Newton-PCG method, which
replaces the direct solver used at each Newton iteration with an
iterative PCG solver. As explained in [Yang et al. 2015], each Newton-
PCG iteration calculates the product of K|u0 · p, where K|u0 is the
current tangent stiffness matrix at u = u0, and p is a known displace-
ment vector. This product can also be understood as the directional
derivative of the energy function E and be numerically computed
via CSFD as:

K|u0 · p =
∂2E

∂u2

����
u0

· p = ∇p E |u0 ≈
Im

(
E∗(u0 + h · pi)

)
h

. (37)

As shown in Fig. 7, CSFD-based directional derivative is also highly
accurate, which produces the same result of analytic Newton and
MCSFD Newton. The regular finite difference crashes immediately
when the Armadillo collides with the glassy rod.

8.2 Application II: Intuitive Hyperelastic Simulation

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5
5.5

0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2

V
ol

um
e

pe
na

lty

|F|

Our penalty
Neo-Hookean penalty

Fig. 10. We design a new
volume penalty term of
log2

(
1 − 4(J − 1)2

)
, which

yields much bigger internal forces
when J = |F | deviates from 1
than the regular Neo-Hookean
volume penalty of (J − 1)2 does.

For hyperelastic models, the form
of the elastic energy (i.e. Eq. (35))
solely determines the deformed
shape given inertial and exter-
nal forces. Hyperelastic energy is
typically defined based on three
isotropic invariants of the defor-
mation gradient: I1 = tr(F⊤F),
I2 = tr

(
(F⊤F)2

)
, and I3 = |F⊤F|2.

Intuitively, I1 measures the length
change of the deformation; I2 mea-
sures the area change of the defor-
mation; and I3 measures the vol-
ume change of the deformation. As
long as the internal force ∂E/∂u
and the tangent stiffness matrix
∂2E/∂u2 are available, the dy-
namic behavior of the deformable
body can be simulated using standard FEM. The closed-form for-
mulation of ∂E/∂u and ∂2E/∂u2 for some material models such as
co-rotational model, StVK model, Neo-Hookean model are available

ACM Trans. Graph., Vol. 38, No. 6, Article 160. Publication date: November 2019.

160:12 • Luo et al

Arruda–Boyce Fung Mooney-Rivlin Neo-Hookean Ogden Polynomial StVK Yeoh

Fig. 9. CSFD/MCSFD allows the user to easily simulate all kinds of hyperelastic materials. The figure reports the material behaviors under standard bending,
compressing, stretching, and twisting tests of a box model with 14, 678 elements. From left to right, each column gives the result of Arruda–Boyce, Fung,
Mooney-Rivlin, Neo-Hookean, Ogden, Polynomial, invertible StVK [Irving et al. 2004] (for improved stability), and Yeoh materials.

25.4

12.4 16.0 15.5 15.3 13.1

86.8

38.7

59.4 57.9 57.8

36.2

119.3

49.1

63.8 65.7 66.7

50.3

0

10

20

30

40

50

60

70

80

90

100

110

120

130

Arruda Boyce Fung Mooney-Rivlin Ogden Polynomial Yeoh

C
om

pu
ta

tio
n

tim
e

(1
0k

 e
le

.)
/m

s

Opt. Img. only B.F.

Fig. 11. Timing information of CSFD/MCSFD derivative in simulating var-
ious hyperelastic materials. Opt. is the optimized CSFD/MCSFD compu-
tation time. Img. only is the time without computing the real part of the
promoted energy functions.B.F. is the computation time using a brute-force
CSFD/MCSFD implementation.

in the literature [Bonet and Wood 1997; Sifakis and Barbic 2012;
Smith et al. 2018]. However, there are many other materials such
as Fung, Mooney-Rivlin, Ogden, Yeoh, Arruda Boyce models or
the more general Polynomial model. Their energy structure can be
easily followed, but deriving the actual formulation of force and
stiffness matrix prevents these materials from being more widely
employed by the graphics community. CSFD and MCSFD allow us
to conveniently simulate hyperelastic materials with light-weight
implementation efforts. As reported in Fig 9, we simulate all of
those materials using CSFD/MCSFD under standard bending, com-
pressing, stretching and twisting tests. In this experiment, we use

Stable Neo-Hookean material

Our material

Fig. 12. Our new material (Eq. (38)) with a more aggressive volume penalty
term is able to better preserve the volume of this jelly box during the com-
pression than the stable Neo-Hookean material [Smith et al. 2018].

invertible StVK energy [Irving et al. 2004] to improve the stabil-
ity of the regular StVK material. Timing information of different
CSFD/MCSFD implementations is compared in Fig. 11.
In many situations, the user wants to use customized materials

for specific needs in an animation scenario. For instance Smith and
colleague [2018] proposed a new Neo-Hookean-like hyperelastic
energy for a stable integration and volume preservation under large
deformation. Using CSFD/MCSFD, users can freely explore various
such energy densities without tedious derivations for internal force
and Hessian. For instance, we design a new hyperelastic model:

Evolume = µ(J−2/3I1 − 3) + λ

2 log2
(
1 − 4(J − 1)2

)
. (38)

As plotted in Fig. 10, Evolume triggers a much stronger resistance
force to when J = |F| deviates from 1 and thus, better preserves
the volume (i.e. see Fig. 12). In this example, the rest-shape volume

ACM Trans. Graph., Vol. 38, No. 6, Article 160. Publication date: November 2019.

Accelerated Complex-Step Finite Difference for Expedient Deformable Simulation • 160:13

of the jelly box is 0.64. After compressing its height by 65%, the
new volume of the jelly box becomes 0.63 with Evolume and 0.61
with the stable Neo-Hookean material [Smith et al. 2018]. While
numbers look close, we can clearly see that the compressed box is
much wider spread out with Evolume .

Fig. 13. Example-based hyperelastic en-
ergy can also be easily handled with
CSFD/MCSFD. We make the energy a
the function of bending angle so that
a smiling face appears when the box
bends to left and a sad face appears
when the box bends to right. This box
model has 14, 678 elements.

CSFD/MCSFD can deal with
even more complicated ener-
gies. Another example is re-
ported in Fig. 13. In this ex-
ample, we use an example-
based hyperelastic energy as
in [Martin et al. 2011], which
has two target shapes, each of
which embeds a smiling face
, or a sad face / on the sur-
face. We design this energy to
be the function of the bend-
ing orientation so that corre-
sponding internal forces arise
when the box is bent to a cer-
tain direction. CSFD/MCSFD frees us from formulating the ani-
mation system and to quickly toy with many of such examples to
achieve more interesting animations.

/
|

|

-1,100
-1,000

-900
-800
-700
-600
-500
-400
-300
-200
-100

0

0 100 200 300 400 500 600 700 800 900

Time step

Fig. 14. Complicated energy formulation as Eq. (39) could hide singularities
that are unfriendly for AD. CSFD/MCSFD can tackle this issue robustly.

For a customized material, it is possible that the user-specified
energy has some singularities due to its complex formulation. In
this case, AD packages, regardless of their slow performance, could
even fail the simulation if any element reaches the singularity. To
better elaborate this, we create another energy with the form of:

Esinдular = µ(J−2/3I1 − 3) + λ(J − 1)2 +
√
cos2 4(J − 1) − 1. (39)

As shown in Fig. 14, if we slowly bend the dragon with this material
using AD, the system crashes with the division-by-zero error when
an element hits the singular point. CSFD/MCSFD is robust in such
situations. Referring to Eq. (7), it is easy to see that as long as f (x0)
exists, f ∗(x0 + hi) also exists because it is perturbed orthogonally
towards the real domain and never touches the real-valued singu-
larity. Therefore, CSFD always returns a well-estimated derivative
value because h is also nonzero.

8.3 Application III: Expressive Model Reduction
Model reduction is a widely-used technique to produce real-time
deformable animation. This technique needs a pre-built subspace,

Fig. 15. Real-time simulation of six falling dinosaur models using modal
derivative (30 modes for each dinosaur). The first-order derivative modes
are computed using CSFD, and we use Fung, Mooney-Rivlin, Ogden, Yeoh,
Arruda–Boyce and Polynomial materials for each dinosaur.

which defines all the possible deformations of the deformable body.
The standard method for subspace construction is based on the
modal analysis [Pentland and Williams 1989], which provides the
optimal vibrational modes around the rest shape. For nonlinear
models, we need to compute derivative modes that first-order ap-
proximate a low-frequency nonlinear vibration [Barbič and James
2005; Yang et al. 2015]. Computing derivative modes requires the
calculation of the force Hessian (i.e. the third-order derivative of
E). Therefore, this powerful technique is normally used only for
the StVK material, whose stiffness matrix is quadratic w.r.t to the
displacement vector. Applying nonlinear model reduction to other
materials using modal derivative is less exploited due to the barrier
of computing high-order energy gradients. CSFD/MCSFD allows
us to build expressive and compact subspace easily for any given
hyperelastic material. Fig. 15 shows snapshots of a real-time sim-
ulation of six falling dinosaur models using 30 first-order modal
derivatives. Each dinosaur model has 356, 48 elements, and they are
of Fung, Mooney-Rivlin, Ogden, Yeoh, Arruda Boyce, and Polyno-
mial materials. Yang and colleagues [2015] introduced a method
that generalizes modal derivative to higher-order nonlinear shape
approximation. This method can also be readily implemented with
MCSFD. As shown in Fig. 16, we apply a circular force to bow the
dinosaur model. Second-order modal derivatives are able to capture
extreme bending effects. In this experiment, the hyperelastic mate-
rial of Eq. (38) has a strong volume preserving term, which prevents
this material from being extremely bent as other materials under
the same external forces.

8.4 Application IV: Convenient Inverse Design
A lot of design problems tweak a collection of parameters to make
sure that the simulated result matches certain specific measures like
the maximum stress, deflection magnitude and so on. While there
are many techniques (e.g. the well-known adjoint method) that are

ACM Trans. Graph., Vol. 38, No. 6, Article 160. Publication date: November 2019.

160:14 • Luo et al

Arruda–Boyce Mooney-Rivlin Neo-Hookean Ogden Our material

Fig. 16. MCSFD allows us to compute higher-order modal derivatives that capture extreme bending effects of the dinosaur model (using 30 second-order
derivative modes). Interestingly, the hyperelastic energy of Eq. (38), because of its strong resistance to volume change, cannot be bent as hard as other
materials under the same external force.

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

1 2 3 4 5 6

Ta
rg

et
 fu

nc
tio

n

Newton iteration

Fig. 17. We develop a system with an intuitive interface for the linear
frequency design (left). The error reduces quickly along Newton iterations,
with the Hessian accurately computed from MCSFD. (right)

capable of handling those problems, we show that CSFD/MCSFD is
also a convenient alternative to deal with inverse simulations.
In Fig. 1, we show an example where the user wants to adjust

the linear vibration frequencies of a bridge for a given external
wind field by changing three primary geometry parameters: length
l , widthw and the height of the arch top t . For an intuitive visualiza-
tion of a frequency pattern, our system allows the user to apply this
wind field to a standard rectangular beam (with two ends fixed) and
to change its geometry/material to generate a preferred vibration
pattern (see Fig. 17). The principle vibration of a linear structure un-
der a given direction u is described by the Rayleigh quotient defined
as ω2 = u⊤Ku/u⊤Mu. The wind is modeled as an acceleration field
a meaning u = K−1Ma. As a result, the frequency design procedure

can be formulated as an optimization problem of:

arg min
l ,w ,t

f , f (l,w, t) =

ω∗2 −
a⊤MK−1Ma

a⊤MK−1MK−1Ma

2 , (40)

where ω∗2 is our target frequency.M = M(l,w, t) and K = K(l,w, t)
are tensor functions of the unknown geometry parameters l ,w , t to
be optimized. In this example, we use the CR form (Eq. (31)) to pro-
moteM(l,w, t) and K(l,w, t), and Newton’s method is used to solve
Eq. (40). Thanks to the accurate Hessian obtained by MCSFD, our
solver quickly finds the optimal geometry only with few iterations.

9 CONCLUSION AND FUTURE WORK
In this paper, we show how to accelerate and generalize the complex-
step finite difference to efficiently obtain an accurate numerical
derivative of an arbitrary order. Its superior precision comes from
complex or multicomplex promotion of the target function, which
avoids the subtractive cancellation issue in standard finite difference
methods. Without worrying about losing many significant digits
during the calculation, CSFD and MCSFD allow us to have a very
small perturbation to obtain a numerical derivative at the precision
of machine epsilon implying it is as accurate as the analytic deriva-
tive. We propose a collection of acceleration techniques that avoid
redundant and costly calculations induced by the complex promo-
tion. Therefore our CSFD and MCSFD are as efficient as analytic
derivative, but we are freed from the derivation for the actual differ-
entiation. We show how this numerical algorithm can be applied

ACM Trans. Graph., Vol. 38, No. 6, Article 160. Publication date: November 2019.

Accelerated Complex-Step Finite Difference for Expedient Deformable Simulation • 160:15

for physics-based deformable simulation. Indeed, we believe that
this method could be useful in a variety of graphics problems.

The limitation of this methodmay be it requires a dedicated imple-
mentation in order to achieve a good performance. When CR form
is used, the computation quickly becomes prohibitive if one wants
to evaluate higher-order derivatives for a tensor-valued function.
However, if the efficiency is not the primary concern, one can im-
plement CSFD and MCSFD quickly based on any existing complex
arithmetic library. In the future, we would like to fully leverage this
new method to attack other challenging computational problems.
For instance, to perform the imaginary perturbation along the time
domain to get a better time integration. It is also of great interests
to us to apply this method to machine learning and other similar
problems where optimizing complicated functions is required.

ACKNOWLEDGMENTS
We thank reviewers for their professional and constructive com-
ments. Ran Luo and Yin Yang are partially supported by National
Science Foundation (NSF) under grants No. 1717972 and No. 1845026.
The views and conclusions contained herein are those of the authors
and should not be interpreted as necessarily representing the offi-
cial policies or endorsements, either expressed or implied, of NSF.
Tianjia Shao is partially supported by NSF of China (No. 61772462,
No. U1736217). Weiwei Xu is partially supported by NSF of China
(No. 61732016), and the fundamental research fund for the central
universities.

REFERENCES
Mark J Ablowitz and Athanassios S Fokas. 2003. Complex variables: introduction and

applications. Cambridge University Press.
Rafael Abreu, Zeming Su, Jochen Kamm, and Jinghuai Gao. 2018. On the accuracy

of the Complex-Step-Finite-Difference method. J. Comput. Appl. Math. 340 (2018),
390–403.

Lars V Ahlfors. 1973. Complex Analysis. 1979.
W Kyle Anderson, James C Newman, David L Whitfield, and Eric J Nielsen. 2001.

Sensitivity analysis for Navier-Stokes equations on unstructured meshes using
complex variables. AIAA journal 39, 1 (2001), 56–63.

RL Bagley. 2006. On Fourier differentiation – a numerical tool for implicit functions.
International Journal of Applied Mathematics 19, 3 (2006), 255.

David Baraff. 1989. Analytical methods for dynamic simulation of non-penetrating
rigid bodies. In ACM SIGGRAPH Computer Graphics, Vol. 23. ACM, 223–232.

David Baraff. 1991. Coping with friction for non-penetrating rigid body simulation.
ACM SIGGRAPH computer graphics 25, 4 (1991), 31–41.

David Baraff and Andrew Witkin. 1998. Large steps in cloth simulation. In Proceedings
of the 25th annual conference on Computer graphics and interactive techniques. ACM,
43–54.

Jernej Barbič and Doug L James. 2005. Real-time subspace integration for St. Venant-
Kirchhoff deformable models. In ACM transactions on graphics (TOG), Vol. 24. ACM,
982–990.

Jernej Barbič, Funshing Sin, and Eitan Grinspun. 2012. Interactive editing of deformable
simulations. ACM Transactions on Graphics (TOG) 31, 4 (2012), 70.

Jernej Barbič, Fun Shing Sin, and Daniel Schroeder. 2012. Vega FEM Library.
Atilim Gunes Baydin and Barak A Pearlmutter. 2014. Automatic differentiation of

algorithms for machine learning. arXiv preprint arXiv:1404.7456 (2014).
Bradley M Bell. 2012. CppAD: a package for C++ algorithmic differentiation. Computa-

tional Infrastructure for Operations Research 57 (2012), 10.
Michael Betancourt. 2018. A Geometric Theory of Higher-Order Automatic Differenti-

ation. arXiv preprint arXiv:1812.11592 (2018).
Javier Bonet and Richard D Wood. 1997. Nonlinear continuum mechanics for finite

element analysis. Cambridge university press.
Patrick Brezillon, Jean-François Staub, Anne-Marie Perault-Staub, and Gérard Milhaud.

1981. Numerical estimation of the first order derivative: approximate evaluation of
an optimal step. Computers & Mathematics with Applications 7, 4 (1981), 333–347.

Robert Bridson. 2015. Fluid simulation for computer graphics. AK Peters/CRC Press.
N Butuk and J-P Pemba. 2003. computing CHEMKIN sensitivities using complex

variables. Journal of engineering for gas turbines and power 125, 3 (2003), 854–858.

Steve Capell, Seth Green, Brian Curless, Tom Duchamp, and Zoran Popović. 2002.
Interactive skeleton-driven dynamic deformations. In ACM transactions on graphics
(TOG), Vol. 21. ACM, 586–593.

Xiang Chen, Changxi Zheng,Weiwei Xu, and Kun Zhou. 2014. An asymptotic numerical
method for inverse elastic shape design. ACM Transactions on Graphics (TOG) 33, 4
(2014), 95.

Jeffrey Fike and Juan Alonso. 2011. The development of hyper-dual numbers for exact
second-derivative calculations. In 49th AIAA Aerospace Sciences Meeting including
the New Horizons Forum and Aerospace Exposition. 886.

Jeffrey Alan Fike. 2013. Multi-objective optimization using hyper-dual numbers. Ph.D.
Dissertation. Stanford university.

N Fleury, M Rausch Detraubenberg, and RM Yamaleev. 1993. Commutative extended
complex numbers and connected trigonometry. Journal of mathematical analysis
and applications 180, 2 (1993), 431–457.

Rony Goldenthal, David Harmon, Raanan Fattal, Michel Bercovier, and Eitan Grinspun.
2007. Efficient simulation of inextensible cloth. In ACM Transactions on Graphics
(TOG), Vol. 26. ACM, 49.

Andreas Griewank, David Juedes, and Jean Utke. 1996. Algorithm 755: ADOL-C: a
package for the automatic differentiation of algorithms written in C/C++. ACM
Transactions on Mathematical Software (TOMS) 22, 2 (1996), 131–167.

Andreas Griewank and Andrea Walther. 2008. Evaluating derivatives: principles and
techniques of algorithmic differentiation. Vol. 105. Siam.

Eitan Grinspun, Anil N Hirani, Mathieu Desbrun, and Peter Schröder. 2003. Discrete
shells. In Proceedings of the 2003 ACM SIGGRAPH/Eurographics symposium on Com-
puter animation. Eurographics Association, 62–67.

Gael Guennebaud, Benoit Jacob, et al. 2014. Eigen: a c++ linear algebra library. URL
http://eigen. tuxfamily. org, Accessed 22 (2014).

Brian Guenter. 2007. Efficient symbolic differentiation for graphics applications. In
ACM Transactions on Graphics (TOG), Vol. 26. ACM, 108.

Fabian Hahn, Sebastian Martin, Bernhard Thomaszewski, Robert Sumner, Stelian Coros,
and Markus Gross. 2012. Rig-space physics. ACM transactions on graphics (TOG) 31,
4 (2012), 72.

Fabian Hahn, Bernhard Thomaszewski, Stelian Coros, Robert W Sumner, and Markus
Gross. 2013. Efficient simulation of secondary motion in rig-space. In Proceedings
of the 12th ACM SIGGRAPH/eurographics symposium on computer animation. ACM,
165–171.

Robert Hecht-Nielsen. 1992. Theory of the backpropagation neural network. In Neural
networks for perception. Elsevier, 65–93.

Robin J Hogan. 2014. Fast reverse-mode automatic differentiation using expression
templates in C++. ACM Transactions on Mathematical Software (TOMS) 40, 4 (2014),
26.

IEEE. 1985. IEEE standard for binary floating-point arithmetic. Institute of Electrical
and Electronic Engineers.

Geoffrey Irving, Joseph Teran, and Ronald Fedkiw. 2004. Invertible finite elements
for robust simulation of large deformation. In Proceedings of the 2004 ACM SIG-
GRAPH/Eurographics symposium on Computer animation. Eurographics Association,
131–140.

Sanghaun Kim, Junghyun Ryu, and Maenghyo Cho. 2011. Numerically generated tan-
gent stiffness matrices using the complex variable derivative method for nonlinear
structural analysis. Computer Methods in Applied Mechanics and Engineering 200,
1-4 (2011), 403–413.

Yuki Koyama, Kenshi Takayama, Nobuyuki Umetani, and Takeo Igarashi. 2012.
Real-time example-based elastic deformation. In Proceedings of the ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation. Eurographics Association,
19–24.

Edna E Kramer. 1930. Polygenic functions of the dual variable w= u+ jv. American
Journal of Mathematics 52, 2 (1930), 370–376.

K-L Lai and JL Crassidis. 2008. Extensions of the first and second complex-step derivative
approximations. J. Comput. Appl. Math. 219, 1 (2008), 276–293.

Gregory Lantoine, Ryan P Russell, and Thierry Dargent. 2012. Using multicomplex
variables for automatic computation of high-order derivatives. ACM Transactions
on Mathematical Software (TOMS) 38, 3 (2012), 16.

Sonia Lebofsky. 2013. Numerically Generated Tangent Stiffness Matrices for Geometrically
Non-Linear Structures. Ph.D. Dissertation.

Abraham Lee. 2013. ad: Fast, transparent first- and second-order automatic differentia-
tion. http://pythonhosted.org/ad

Tiantian Liu, Adam W Bargteil, James F O’Brien, and Ladislav Kavan. 2013. Fast
simulation of mass-spring systems. ACM Transactions on Graphics (TOG) 32, 6
(2013), 214.

Tiantian Liu, Sofien Bouaziz, and Ladislav Kavan. 2017. Quasi-newton methods for
real-time simulation of hyperelastic materials. ACM Transactions on Graphics (TOG)
36, 4 (2017), 116a.

JN Lyness. 1968. Differentiation formulas for analytic functions. Math. Comp. (1968),
352–362.

James N Lyness. 1967. Numerical algorithms based on the theory of complex variable.
In Proceedings of the 1967 22nd national conference. ACM, 125–133.

ACM Trans. Graph., Vol. 38, No. 6, Article 160. Publication date: November 2019.

http://pythonhosted.org/ad

160:16 • Luo et al

V Maple. 1994. Waterloo maple software. University of Waterloo, Version 5 (1994).
Charles C Margossian. 2018. A Review of automatic differentiation and its efficient im-

plementation. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery
(2018), e1305.

Sebastian Martin, Bernhard Thomaszewski, Eitan Grinspun, and Markus Gross. 2011.
Example-based elastic materials. In ACM Transactions on Graphics (TOG), Vol. 30.
ACM, 72.

Joaquim RRA Martins, Peter Sturdza, and Juan J Alonso. 2003. The complex-step
derivative approximation. ACM Transactions on Mathematical Software (TOMS) 29,
3 (2003), 245–262.

Don Mitchell and Pat Hanrahan. 1992. Illumination from curved reflectors. In ACM
SIGGRAPH Computer Graphics, Vol. 26. ACM, 283–291.

Arturo Montoya, Randal Fielder, Armando Gomez-Farias, and Harry Millwater. 2014.
Finite-element sensitivity for plasticity using complex variable methods. Journal of
Engineering Mechanics 141, 2 (2014), 04014118.

HM Nasir. 2013. A new class of multicomplex algebra with applications. Mathematical
Sciences International Research Journal 2, 2 (2013), 163–168.

Richard D Neidinger. 2010. Introduction to automatic differentiation and MATLAB
object-oriented programming. SIAM review 52, 3 (2010), 545–563.

Jorge Nocedal and Stephen Wright. 2006. Numerical optimization. Springer Science &
Business Media.

Alex Pentland and John Williams. 1989. Good vibrations: Modal dynamics for graphics
and animation. Vol. 23. ACM.

Agustí Pérez-Foguet, Antonio Rodríguez-Ferran, and Antonio Huerta. 2000. Numerical
differentiation for local and global tangent operators in computational plasticity.
Computer Methods in Applied Mechanics and Engineering 189, 1 (2000), 277–296.

Griffith Baley Price. 1991. An introduction to multicomplex spaces and functions. M.
Dekker.

Louis B Rall. 1981. Automatic differentiation: Techniques and applications. (1981).
Michael Renardy and Robert C Rogers. 2006. An introduction to partial differential

equations. Vol. 13. Springer Science & Business Media.
Boris Schäling. 2011. The boost C++ libraries. Boris Schäling.
Adriana Schulz, Jie Xu, Bo Zhu, Changxi Zheng, Eitan Grinspun, and Wojciech Matusik.

2017. Interactive design space exploration and optimization for cad models. ACM
Transactions on Graphics (TOG) 36, 4 (2017), 157.

Ken Shoemake. 1985. Animating rotation with quaternion curves. In ACM SIGGRAPH
computer graphics, Vol. 19. ACM, 245–254.

Eftychios Sifakis and Jernej Barbic. 2012. FEM simulation of 3D deformable solids:
a practitioner’s guide to theory, discretization and model reduction. In ACM SIG-
GRAPH 2012 Courses. ACM, 20.

Breannan Smith, Fernando De Goes, and Theodore Kim. 2018. Stable Neo-Hookean
Flesh Simulation. ACM Transactions on Graphics (TOG) 37, 2 (2018), 12.

William Squire and George Trapp. 1998. Using complex variables to estimate derivatives
of real functions. SIAM review 40, 1 (1998), 110–112.

Ari Stern and Mathieu Desbrun. 2006. Discrete geometric mechanics for variational
time integrators. In ACM SIGGRAPH 2006 Courses. ACM, 75–80.

Demetri Terzopoulos, John Platt, Alan Barr, and Kurt Fleischer. 1987. Elastically de-
formable models. ACM Siggraph Computer Graphics 21, 4 (1987), 205–214.

Christoph W Ueberhuber. 2012. Numerical computation 1: methods, software, and
analysis. Springer Science & Business Media.

AndrewVoorhees, HarryMillwater, and Ronald Bagley. 2011. Complex variablemethods
for shape sensitivity of finite element models. Finite elements in analysis and design
47, 10 (2011), 1146–1156.

Huamin Wang and Yin Yang. 2016. Descent methods for elastic body simulation on the
GPU. ACM Transactions on Graphics (TOG) 35, 6 (2016), 212.

Andrew Witkin. 1997. Physically Based Modeling: Principles and Practice Particle
System Dynamics. SIGGRAPH Course notes (1997).

Stephen Wolfram et al. 1996. Mathematica. Cambridge university press Cambridge.
Hongyi Xu, Funshing Sin, Yufeng Zhu, and Jernej Barbič. 2015. Nonlinear material

design using principal stretches. ACM Transactions on Graphics (TOG) 34, 4 (2015),
75.

Guowei Yan, Wei Li, Ruigang Yang, and Huamin Wang. 2018. Inexact descent methods
for elastic parameter optimization. In SIGGRAPH Asia 2018 Technical Papers. ACM,
253.

Yin Yang, Dingzeyu Li, Weiwei Xu, Yuan Tian, and Changxi Zheng. 2015. Expediting
precomputation for reduced deformable simulation. ACM Transactions on graphics
(TOG) 34, 6 (2015).

A ELEMENTARY COMPLEX PROMOTION
The addition/subtraction and multiplication are trivial:

f (x0) = x0 ± a → f ∗(x0 + hi) = x0 ± a + hi,
f (x0) = s · x0 → f ∗(x0 + hi) = sx0 + shi .

(41)

The division is treated as the multiplication of the conjugate:

f (x0) =
a

x
→ f ∗(x0 + hi) =

a

r2
(x0 − hi), r =

√
x20 + h

2. (42)

If the exponent of the power function (xa) is an integer i.e. a = n ∈ Z,
we can use the De Moivre’s formula:

f (x0) = xn → f ∗(x0 + hi) = r
n (cosnϕ + sinnϕi), (43)

where r cosϕ = x0 and r sinϕ = h is the polar form of x0 + hi . On
the other hand, a = 1/m (m ∈ Z) makes f (x0) anm-root function,
and the promotion is:

f (x0) = x
1
m
0 → f ∗(x0 + hi) = r

1
m

(
cos ϕ + 2πk

m
+ sin ϕ + 2πk

m
i

)
.

(44)
Here, k is an integer between 0 andm − 1. In more general cases,
when a ∈ Q is a rational number such that a = n/m, the power
function of xa is split as f (x) = yn and y = a1/m .

The exponential function is promoted based on Euler’s formula:
f (x0) = ex0 → f ∗(x0 + hi) = ex0 (cosh + sinhi). (45)

The logarithmic promotion is the inverse of the exponential map,
which can be obtained as:

f (x0) = lnx0 → f ∗(x0 + hi) = ln r + (ϕ + 2πk)i, k ∈ Z. (46)
Trigonometric functions can also be defined with complex numbers.
According to Euler’s formula, we have sinα = (eα i − e−α i)/2i .
Substituting α with x0 + hi leads to the promotion of sinx :

f (x0) = sinx0 → f ∗(x0+hi) =
eh + e−h

2 sinx0+
eh − e−h

2 cosx0i .
(47)

Similarly, cosα = (eα i + e−α i)/2 is promoted as:

f (x0) = cosx0 → f ∗(x0+hi) =
eh + e−h

2 cosx0−
eh − e−h

2 sinx0i .
(48)

Note that the promotion of exponential and logarithmic functions
of Eqs. (44) and (46) is not unique due to the periodicity. We can
restrict the argument angle to [0, 2π], that makes k = 0.

ACM Trans. Graph., Vol. 38, No. 6, Article 160. Publication date: November 2019.

	Abstract
	1 Introduction
	2 Related Work
	3 Background
	4 Complex-Step Finite Difference
	5 CSFD Acceleration
	5.1 Accelerate CSFD of a Single Elementary Function
	5.2 Accelerate CSFD of Composite Binary Operators
	5.3 Accelerate CSFD of Composite Unary Operators

	6 Multicomplex-Step Perturbation
	7 Tensor Function
	8 Experimental Results
	8.1 Application I: Accurate Nonlinear Optimization
	8.2 Application II: Intuitive Hyperelastic Simulation
	8.3 Application III: Expressive Model Reduction
	8.4 Application IV: Convenient Inverse Design

	9 Conclusion and Future Work
	Acknowledgments
	References
	A Elementary Complex Promotion

