
Agile Structural Analysis for Fabrication-Aware Shape Editing

Yue Xie

State Key Lab of CAD&CG, Zhejiang University

Weiwei Xu∗

Hangzhou Normal University

Yin Yang

The University of New Mexico

Xiaohu Guo

The University of Texas at Dallas

Kun Zhou

State Key Lab of CAD&CG, Zhejiang University

Abstract

This paper presents an agile simulation-aided shape editing system for personal fabrication applications.
The finite element structural analysis and geometric design are seamlessly integrated within our system to
provide users interactive structure analysis feedback during mesh editing. Observing the fact that most
editing operations are actually local, a domain decomposition framework is employed to provide unified
interface for shape editing, FEM system updating and shape optimization. We parameterize entries of
the stiffness matrix as polynomial-like functions of geometry editing parameters thus the underlying FEM
system can be rapidly synchronized once edits are made. A local update scheme is devised to re-use the
untouched parts of the FEM system thus a lot repetitive calculations are avoided. Our system can also
perform shape optimizations to reduce high stresses in model while preserving the appearance of the model
as much as possible. Experiments show our system provides users a smooth editing experience and accurate
feedback.

Keywords: Shape Editing, FEM, Stress Analysis, 3D Printing

1. Introduction

The fast developing of rapid prototyping technologies, such as 3D printing, enables convenient manu-
facturing of real objects from complex 3D digital models. As a prominent example, 3D printing has been
extensively adopted in various areas such as architecture construction, industrial design and medical indus-
tries. The 3D printing technology converts an input digital model into layers, manufactures each layer and5

glues them together to shape a real object with various types of technologies, such as selective inhibition
sintering (SIS), stereolithography (SLA) and fused deposition modeling (FDM) [1]. People can handily
fabricate their own designs with emerging low-cost 3D printers and open-source softwares [2, 3].

∗Corresponding author
Email addresses: xie.full@gmail.com (Yue Xie), weiwei.xu.g@gmail.com (Weiwei Xu), yangy@unm.edu (Yin Yang),

xguo@utdallas.edu (Xiaohu Guo), kunzhou@acm.org (Kun Zhou)

Preprint submitted to Journal of Computer Aided Geometric Design March 15, 2015

To provide novice users feasible controls over the physical properties of the designed objects, many
computational design tools have been developed in computer graphics community, i.e. devising objects10

with desirable structural stability [4, 5], deformation behaviors [6, 7] or kinetic constraints [8, 9]. The finite
element method (FEM) is widely adopted in such tools for accurate structural analysis, but it becomes time-
consuming when the input digital models are complex. This can downgrade the system usability, especially
in cases that users need to iterate the editing-simulating process. Moreover, most existing methods or
commercial CAD/CAE packages only combine design and FEM simulation at the interface layer and users15

have to do the shape design and FEM simulation in separate stages. A recent contribution aims to update
FEM simulation data structures during geometry editing [10]. However, it only focuses on the design
problems of moderate-size 2D models using linear elements. Fast design and simulation integrated system
for large-scale 3D models using high order elements remains a technical challenge under investigation.

In this paper, we present an fabrication-aware shape editing system which can provide structure analysis20

feedback interactively for large 3D models. The main feature of our system is the seamless integration
of FEM simulation and shape editing operations at domain level via the domain decomposition method,
a well-known technique in FEM simulation for solving large scale matrix systems [11]. In our case, such
integration enables to assemble the stiffness matrix of the FEM system locally at each domain. Furthermore,
the entries of the stiffness matrix can be parameterized as closed-form expressions of the parameters of25

editing operations at domain-level, such as scaling and rotating. Thus, the FEM system updating speed is
largely improved. The editing interface of our system is mainly a skeleton-driven editing interface where
domains are connected to form kinematic chains. Scaling operations are also supported at each domain to
support stress-relief operations [4]. We also develop a domain-based optimizer that can optimize the domain
geometry parameters to reduce the maximal stress value to a required threshold while preserving model30

shape. The parameterized entries allows us to compute the derivatives of stiffness matrix with respect to
editing parameters easily in the optimization. The optimization algorithm can release the user efforts to
manually adjust shapes to improve the structural stability.

The distinctive features of our system are:

• Observing that users often perform editing operations locally, such as posing, scaling and thickening35

parts of a mesh, we propose to adopt the non-overlapping domain decomposition as a unified interface
for geometry editing, FEM system updating and shape optimization. Therefore, when only a part of
the mesh is modified, our system can locally re-assemble the sub-matrices of FEM system belonging
to the affected domains while leaving the rest parts untouched. Compared to re-assembling the whole
system, a lot unnecessary calculations can be avoided. Our shape optimizer can also take advantage40

of domain decomposition to decrease the number of optimization variables for fast convergence.

• We derive closed-form formulas to parameterize each entry of the stiffness matrix as a polynomial-alike
function of the domain scaling factors. With coefficients pre-computed, when a domain is scaled our
system could update each entry of its stiffness matrix through 3 multiplications plus 2 additions. Com-
pared to assembling stiffness matrices directly from vertex coordinates, our parametrization method45

is 2-3x faster.

• We propose a domain-based shape optimization algorithm that can perform local optimizations to
reduce high stresses while preserving the model shape. Observing that the shapes of the mesh parts
far away from high stresses are almost not changed during optimizations, our system only chooses the
domains close to high stresses as optimizing variables. A constraint list is also dynamically maintained50

to reduce the cost of constraints enforcement. With the described optimization algorithm, our system
can obtain the optimized results within 1-2 minutes.

We have tested our system with a variety of 3D models and the results show that our system provides
users agile feedbacks. The accuracy of our system is also verified through two physical experiments on 3D
print-out objects.55

2

2. Related Work

3D Printing: Since 3D printing technology provides users the opportunities to interact with the designed
3D object in real world, it receives a significant amount of research interests in the computer graphics
community. In recent years, many techniques are invented to facilitate the printing process, such as adding
scaffoldings as support structures [12], decomposing a printable model to separate parts [13, 14], hollowing60

printable models [15] and using skin-frame structures as internal supports [16]. Research efforts have also
been devoted to design algorithms to let the printed 3D objects possess desirable physical properties, such as
deformation [6, 17], articulation [18, 19], mechanical motion [20, 21, 8, 9] and appearance [7, 22, 23, 24, 25].
3D printing technology has been adopted in many works as a convenient method of fabrication, for example,
in face cloning [26], self-supporting structures [27] and appearance-mimicking surfaces [28].65

Our work is most related to the structural stability analysis of the 3D printable design. Stress relief
operations, such as hollowing and thickening, are adopted in [4] to improve the structural stability of the
3D objects, once areas with high stress are detected. A fast method to analyze worst load distribution
that will cause high stress in printed object is developed in [5]. These two algorithms can be viewed as
a post-processing of the 3D design. In contrast, given the material properties which will be used in 3D70

printing, our goal is to develop an interactive structural analysis algorithm to let the user predict the stress
distribution during designing. The structural analysis algorithm can also efficiently handle various external
load constraints.

Fabrication-aware Design: Fabrication-aware design focuses on developing geometric design algorithms
that facilitate fabrication. For instance, in architecture geometry, Liu et al. [29, 30] developed algorithms75

to design planar quad mesh for freeform architectural surface to reduce the fabrication cost. To facilitate
the 3D shape fabrication, algorithms have been designed to convert the 3D shape into planar slices [31, 32].
Given a 3D furniture model, Lau et al. [33] proposed a method to decompose it into parts and connectors
according to fabrication constraints. Recently, Koo et al. [34] introduced a system for creating works-like
prototypes of mechanical objects and Thomaszewski et al. [35] proposed a system for designing linkage-based80

characters computationally. The technologies that perform physical simulations during shape design also
fall into the area of concurrent engineering, where its philosophy is to take different targets of product design
into account in parallel [36].

In order to allow users to predict the physical properties of the designed object, fast simulation techniques
are integrated into design system so that the influences of changing geometric parameters on the physical85

properties can be efficiently computed. Its typical applications include plush toy design [37] and sensitivity
analysis based cloth design [38]. Sensitivity analysis technique is also adopted in furniture design to fast
compute the structural stability [39]. Our work can be viewed as a fabrication-aware design algorithm, as
we provide users interactive tools to edit the shape of the printable models, and integrate FEM simulation
into our system to provide user structure analysis feedback.90

Domain Decomposition: Domain Decomposition (DD) is a numerical technique originally designed for
solving partial differential equations (PDEs) [40] inspired by the idea of divide and conquer. Farhat et
al. [41, 11] propose large-scale iterative DD solvers, which uses Lagrange multipliers to enforce continuity
constraints on the interface between domains and can be executed on multiple cores in parallel. In the
computer graphics community, similar ideas have also been adopted in FEM based animation techniques.95

Nevertheless, in order to achieve a real-time simulation performance, simplifications have been applied, for
example the assumption of interface rigidity [42], penalty forces based soft coupling [43], or with reduced
boundary freedoms [44].

Instead of using DD as a computing technique, we use DD as a strategy to take advantage of locality. Our
system adopts DD as a unified interface for shape editing, FEM system updating and shape optimization,100

while still solves the FEM system using direct factorization.

3. System Overview

In this section, we briefly introduce each stage of our system. The pipeline of our system is illustrated
in Figure 1.

3

F domain
R domain

(a) Input Mesh (b) Skeleton
Constrution

(d) Interactive Shape
Editing

(f) Fabrication(c) Domain
Decomposition

(e) Scaling
Optimization

Fixed Fixed

50N 50N

Figure 1: The workflow of our system. (a) The input of our system is a tetrahedral mesh. (b) A skeleton is
constructed from the input mesh. (c) The mesh is decomposed to domains according to the skeleton, and
the decomposed domain is associated with the bones. (d) Users can edit the mesh and see the influence on
stress distribution interactively. (e) Our system also can optimize the shape to reduce stresses. (f) After
the stresses are reduced to a safe level, the edited mesh is used to print real objects.

Skeleton Construction: The input of our system is a tetrahedral mesh which consists of a set of vertices105

and a set of tetrahedrons. A set of bones B = {b1, b2, . . . , bn} is constructed from the mesh to form a skeleton
which is used as the editing interface. An example of the constructed skeleton can be seen in Figure 1 (b).

Domain Decomposition: According to the skeleton, the tetrahedral mesh is decomposed into a set of
domains D = {D1, D2, . . . , Dn}. Each domain comprises its own sets of vertices and tetrahedrons. Each
tetrahedron of the mesh belong to one and only one domain, while the vertices on interfaces between domains110

are duplicated. Each domain has its own local coordinate system and its vertices are transformed into the
local coordinate system.

Based on the associations between domains and bones, we classify the domains to two types: type R
and type F . A domain of type R is associated with only one bone. Its local coordinate system is built on
the bone and its mesh is completely translated, rotated and scaled with the bone. In its local coordinate115

system, the vertex coordinates could be viewed as functions of the three scaling factors, thus the entries
of the stiffness matrix assembled from the vertex coordinates are functions of the scaling factors too. We
derive closed-form formulas to parameterize these entries, using the scaling factors as the parameters. A
domain of the other type F is associated with multiple bones simultaneously. Its local coordinate system
can be built on an arbitrary associated bone. Its vertex coordinates are transformed with each associated120

bone then blended. We do not parameterize the stiffness matrices of domains of type F . An example of
domain decomposition can be seen in Figure 1 (c). As can be seen from the example, most parts of the
mesh are in domains of type R.

Shape Editing: After all domains associated to the bones, users can begin to manipulate the mesh by
adjusting the skeleton. Our system integrates the Forward Kinematic technique (FK) and the Inverse125

Kinematic technique (IK) to let users translate and rotate the bones, consequently translate, rotate and
blend the associated domains. Our system also let users scale the bones associated with domains of type R,
which consequently scale the associated type R domains and blend the adjacent type F domains. Please
watch the accompanied video to see the effects of editing.

FEM Simulation Integration: When users are editing the mesh, our system runs FEM simulations in
background to provide structure analysis feedback interactively. Same to [4], our system solves the standard
static equilibrium equation for the vertex displacements:

K~u = ~f (1)

where K is the stiffness matrix assembled from the mesh using quadric tetrahedral elements, ~f is the external130

loads, and the solution ~u is the vertex displacements reacting to the external loads.

4

As soon as the mesh is edited by users, our system updates the stiffness matrix K to synchronize the
FEM system with the edited mesh. Instead of re-assembling the whole K, a domain-based local update
scheme is used. Our system maintains local stiffness matrices for each domain, and K is assembled from
these local stiffness matrices. When the mesh is edited, our system detects the affected domains and only re-135

assembles the local stiffness matrices of these domains. Then the entries in K contributed by these domains
are updated with the re-assembled local stiffness matrices. The local stiffness matrices of domains of type
R are parameterized and thus can be re-assembled very efficiently.

After K is updated and (1) is solved, our system calculates the Von-Mises stress of every vertex using (21)
and visualizes the Von-Mises stress distribution on the surface of the mesh. The magnitudes of the Von-140

Mises stresses are represented by different colors, as in Figure 1 (d). From such feedback, users are aware of
the influences of their edits on the stress distribution, thus can avoid editing operations causing high stresses
in the model.

Our system is also able to provide error estimations of the computed Von-Mises stress values to users.
We adopt the method in [45], where an improved stress distribution is first computed on vertices and then145

accuracy errors are calculated in percentage with the difference between the original and improved stress
values.

Scaling Optimization: In addition to providing feedback interactively during editing, our system can also
perform a domain-based shape optimization to automatically reduce the maximal stress in the model. Users
can set a Von-Mises stress threshold based on the material to be used in 3D printing. Our system detects150

a set of domains having Von-Mises stresses larger than the threshold and optimizes their scaling factors.
The result is a mesh most close to the mesh before optimization and satisfies the stress constraints, as in
Figure 1 (e).

Fabrication: After users finish their editing and ensure there are no structure stability problems may be
caused from high stresses, the edited mesh can be used to print real objects. An example is shown in Figure 1155

(f).

In the following sections, we describe each technique used in our system in detail. Section 4 introduces
the methods for skeleton construction and domain decomposition. Section 5 derives the formulas for stiffness
matrix parametrization. Section 6 describes the details of the FEM system updating. Section 7 discusses the
scaling optimization. Section 8 describes the method we used for error estimation. Finally we demonstrate160

our system with several results in Section 9, conclude and discuss the limitations and possible future works
in Section 10.

4. Pre-processing

In pre-processing, we construct a skeleton from the input mesh for the subsequent editing. The input
mesh is decomposed to domains based on the skeleton structure, and the domains are associated with the165

bones.
We adopt the automatic rigging system, Pinocchio, in [46] for skeleton construction. The Pinocchio

system pre-defines a set of skeletons for common animal and human models, and automatically embeds
these skeletons into the input meshes. Our system allows users to edit the skeleton outputted from the
Pinocchio system, like inserting new joints and adjusting joint positions. An example of the constructed170

skeleton can be seen in Figure 1 (b).
The Pinocchio system also computes the skinning weights for the surface vertices of the mesh, which can

be used for domain decomposition. We extend the skinning weights of the surface vertices to the interior
vertices by solving the Laplace’s equation:

∆~w = ~0 (2)

where the components of ~w are the weights of the internal vertices and the Laplace operator ∆ is calculated
using Mean Value Coordinates [47]. The solved weights are consistent with the weights of the surface vertices
and varies smoothly inside the tetrahedral mesh.

5

b3

b1

b2

D1

D2

D3

D4

F domain
R domain

Figure 2: Domain Decomposition. D1 (red), D2 (blue) and D3 (green) are typeR domains and are associated
with bones b1, b2 and b3 respectively. D4 (white) is a type F domain adjacent to D1, D2 and D3, and is
associated with b1, b2 and b3 simultaneously. The orange points represent vertices on the interface between
domains and are duplicated into the domains on both sides.

For each bone bi, we perform a region growing to detect tetrahedrons completely transformed with bi.175

The region grows through face adjacency, which means a tetrahedron could be merged only if it shares a
neighboring face with any already merged tetrahedron. We set a default weight threshold (0.95) such that
a tetrahedron is merged only if the average weight of its four vertices is larger than the threshold. The
tetrahedrons detected in this way form a domain of type R and is associated with bi. We allow users to
modify the domain by tuning the weight threshold and adding/removing individual tetrahedrons, provided180

the face adjacency property is preserved.
After all domains of type R are detected, the left tetrahedrons are grouped to domains of type F ,

according to face adjacency. Such domains are simultaneously associated with multiple bones, an example
could be seen in Figure 2. The mesh of a type F domain is transformed with each associated bone then
blended. To compute the blend weights for each type F domain, any mesh blend method can be used,185

providing the mesh continuities between domains of type R and domains of type F are enforced. For the
sake of simplicity, we use linear blend and calculate the blend weights using the Laplace’s equation (2) with
suitable boundary conditions. For example, as in Figure 2, to calculate the blend weights of vertices of D4

for b1, we assign the weights on the interface between D4 and D1 all 1 and the weights on the interfaces
between D4 and D2, D4 and D3 all 0, then solve the Laplace’s equation on all internal vertices of D4. With190

the blend weights solved in this way, the continuities between domains of R and domains of F are enforced
and the meshes in domains of F are smoothly blended.

5. Stiffness Matrix Parametrization

In this section, we show that each entry of the stiffness matrix of a quadratic tetrahedral mesh can be
expressed as a polynomial. All these polynomials share a few same variables, which are arithmetic expressions195

formed by the scaling factors sx, sy and sz along XY Z axes. The coefficients in these polynomials only
depend on the vertex coordinates of the unedited mesh and the material parameters, thus can be pre-
computed. When the mesh is scaled along XY Z axes, we can update the stiffness matrix by first computing
these variables from sx, sy and sz then re-evaluating the polynomial for each entry.

We use the quadratic tetrahedrons of our input mesh as the finite elements, and each element has 10
nodes which are the 10 vertices forming the tetrahedron, as shown in Figure 3. Following the convention in
FEM textbook [48], the stiffness matrix Ke of an element e can be assembled as:

Ke =

∫∫∫
BTDBdxdydz (3)

6

D is the 6× 6 stress-strain relation matrix formed from the material properties. In our application, we use
isotropic material model. B is the 6× 30 strain-displacement relation matrix:

B =
[

B1 . . . B10

]
(4)

where

Bi =

∂Ni

∂x
∂Ni

∂y
∂Ni

∂z
∂Ni

∂y
∂Ni

∂x
∂Ni

∂z
∂Ni

∂y
∂Ni

∂z
∂Ni

∂x

(5)

Ni denotes the shape function of node i.200

The entries of the 3 × 3 sub-matrix BT
i DBj can be calculated with simple matrix multiplications. For

example, the expression of the top-left entry is:

(BT
i DBj)00 =

E

(1 + v)(1− 2v)
((1− v)

∂Ni
∂x

∂Nj
∂x

+
(1− 2v)

2

∂Ni
∂y

∂Nj
∂y

+
(1− 2v)

2

∂Ni
∂z

∂Nj
∂z

) (6)

where E and v are Young’s modulus and Poisson’s ratio of the material, both are constants.
Substitute (6) into (3), one can observe that the basic terms in the expressions of entries in Ke share

the same form:

c(i, j, θ1, θ2) =

∫∫∫
∂Ni
∂θ1

∂Nj
∂θ2

dxdydz, θ1, θ2 = x, y, z (7)

where θ1 and θ2 are dummy variables which can be x, y or z.
As showed in [48], within a quadratic tetrahedral element, the shape functions can be represented as:

Ni = (2Li − 1)Li, i = 1, 2, 3, 4

N5 = 4L1L2, etc.
(8)

where Li is the 3D barycentric coordinate with respect to the i-th node of the element. When i > 4, the
node is on an edge and its shape function Ni is the product of the shape functions of the two end nodes of
the edge.205

3

2

4

7

5

8

6 9
10

1

P

Figure 3: Quadratic
tetrahedral element

The expression of c can be derived by substituting (8) into (7). For different
combinations of the parameters, c has different forms, but the derivations are
similar. Here we derive c(1, 1, x, x) as an example, the complete formulas can be
found in the appendix at the end of the paper. Suppose we are given an edited
tetrahedron t = {~vi, i = 1...10}, where ~vi = (xi, yi, zi)

T is the position of the i-th
node and are computed by:

xi = sxx
′
i, yi = syy

′
i, zi = szz

′
i (9)

where (x′i, y
′
i, z
′
i)
T are the unedited position and are treated as constants. The

barycentric coordinate of a point P (as in Figure 3) with respect to the 1-th node
is computed as:

L1 =
V ol P234

V ol 1234
=
a1 + b1x+ c1y + d1z

6V
(10)

Here V ol represents the volume computation for the tetrahedron formed by the following 4 points. V is the
volume of the edited tetrahedron and can be computed by V = sxsyszV

′, where V ′ is the volume of the

7

unedited tetrahedron. (x, y, z)T is the coordinates of the point P . a1 will not appear in the final expression,
while b1, c1 and d1 are calculated as [48]:

b1 = −

∣∣∣∣∣∣
1 y2 z2

1 y3 z3

1 y4 z4

∣∣∣∣∣∣ = −

∣∣∣∣∣∣
1 y′2 z′2
1 y′3 z′3
1 y′4 z′4

∣∣∣∣∣∣ sysz = b′1sysz,

c1 = +

∣∣∣∣∣∣
1 x2 z2

1 x3 z3

1 x4 z4

∣∣∣∣∣∣ = +

∣∣∣∣∣∣
1 x′2 z′2
1 x′3 z′3
1 x′4 z′4

∣∣∣∣∣∣ sxsz = c′1sxsz,

d1 = −

∣∣∣∣∣∣
1 x2 y2

1 x3 y3

1 x4 y4

∣∣∣∣∣∣ = −

∣∣∣∣∣∣
1 x′2 y′2
1 x′3 y′3
1 x′4 y′4

∣∣∣∣∣∣ sxsy = d′1sxsy

(11)

Using (10) and (11), the partial derivative ∂N1

∂x in the integrand of c(1, 1, x, x) is calculated as:

∂N1

∂x
= (4L1 − 1)

b′1sysz
6V ′sxsysz

(12)

Substitute (12) into (7), and use the integration equation for 3D barycentric coordinate functions:∫∫∫
Lp1L

q
2L

l
3L

m
4 dxdydz =

p!q!l!m!

(p+ q + l +m+ 3)!
6V (13)

we finally have:

c(1, 1, x, x) =

∫∫∫
∂N1

∂x

∂N1

∂x
dxdydz =

1

60

b′1
2

V ′
s2
ys

2
z

sxsysz
(14)

Thus c(1, 1, x, x) could be regarded as a one-term polynomial with coefficient α and variable m(x,x):

c(1, 1, x, x) = αm(x,x), α =
1

60

b′1
2

V ′
, m(x,x) =

s2
ys

2
z

sxsysz
(15)

where α only depends on the unedited mesh and can be pre-computed.
All types of c can be expressed as the product of a coefficient α and a variable m. According to the

different combinations of the dummy variable θ1 and θ2, there are totally 6 types of m and all of them
are similar to m(x,x), only formed by the three scaling factors. This indicates that all entries of Ke can be
expressed as 1-order polynomials of 6 variables. Then if all the tetrahedrons in a domain are scaled with210

the same scaling factors, as in domains of type R, the entries in the stiffness matrix of the whole domain
are also 1-order polynomials of the 6 variables, and can be computed through polynomial summations.

Checking the expression of each entry of BT
i DBj (such as (6)), we can see that only three types of m

are used for an entry on the diagonal of BT
i DBj while only two are used for an entry off the diagonal. And

the pattern of variable types is same for all BT
i DBj . Thus for every entry of the stiffness matrix, only two215

or three coefficients are need to be stored. With these coefficients pre-computed from the unedited mesh,
only 2-3 multiplications plus 1-2 additions are needed to evaluate an entry.

The same coefficients can also be used to evaluate the partial derivatives of each entry with respect to the
scaling factors, as the formulas for the partial derivatives can be derived by simply differentiating each m
with respect to sx, sy and sz. Thus our parametrization also can be used to compute the partial derivatives220

of the stiffness matrix, which are required in the shape optimization algorithm described in Section 7.
For domains of type F , the derivations in this section also provide a closed-form method to assemble the

stiffness matrix directly from vertex coordinates, with no needs for numerical quadratures.

8

e1 e2

u1 u2 u1

Figure 4: A 1-D two elements example.

6. FEM System Updating

As stated in Section 3, our system solves the standard equilibrium equation (1) for the vertex displace-225

ments. Whenever an editing operation is committed, our system needs to update the stiffness matrix K
in (1) to synchronize with the edited mesh. In this section, we describe the local update scheme used in our
system and the details of updating K.

6.1. Local Update Scheme

We observe that most editing operations only affect a few parts of the mesh, thus we can update K by230

only re-evaluating a small fraction of entries in K. We demonstrate this idea with a simple 1-D example.
Consider the simple 1-D structure formed by two springs in Figure 4. Assume the stiffness matrices of

the two elements e1 and e2 are:

Ke1 =

(
ke111 ke112

ke121 ke122

)
, Ke2 =

(
ke211 ke212

ke221 ke222

)
(16)

Then the global stiffness matrix Kg for the whole structure is assembled by adding the entries of Ke1 and
Ke2 to the corresponding entries in Kg:

Kg =

ke111 ke112

ke121 ke122 + ke211 ke212

ke221 ke222

 (17)

When only the element e2 is changed, Ke2 is changed while Ke1 remains the same. Consequently, Kg is
changed to:

K̂g =

ke111 ke112

ke121 ke122 + k̂e211 k̂e212

k̂e221 k̂e222

 (18)

where the hat on a symbol means its value is changed.
Compare Kg with K̂g, we can see that only the four entries in the bottom-right corner which are

contributed by e2 are changed. Most of these changed entries can be updated by just re-assembling K̂e2 .
The only exception is the entry ke122 + k̂e211 that is related to the vertex on the interface between e1 and235

e2, which also needs the entry ke122 in Ke1 . Ke1 is not changed so that ke122 can be re-used and only an
extra addition is needed. This means when only a few elements of a structure are changed, the global
stiffness matrix of the structure can be updated by only re-assembling the stiffness matrices of the modified
elements plus performing extra additions for the entries related to the vertices on the interfaces between
these elements.240

The same idea can be extended to our domain decomposition case. The global stiffness matrix K can
be updated locally in units of domains. We divide the entries in K to two types: entries contributed by
only one domain and entries contributed by multiple domains simultaneously. When a domain is modified,
the affected entries of the first type can be updated by just re-assembling the local stiffness matrix of the
modified domain, while the affected entries of the second type require extra additions. The entries of the245

second type are only related to vertices on the interfaces between domains, thus only count a small fraction
in the whole matrix.

We design special data structures to facilitate the local updating scheme. For each domain, we store the
positions of the entries in K that are contributed by this domain. For each non-zero entry k in K, we use a

9

list L to record the domains contributing to it. Further, for each domain recorded in L, the position of the250

entry in its local stiffness matrix Ki that is added to k is also stored. For most entries, L only contains one
domain. When a set of domains are edited, our system first updates the Ki of each edited domain, then
locates the affected entries in K and updates these entries by summing the contributions from the domains
recorded in L.

6.2. System Updating255

Instead of assembling K directly from the mesh in a straight forward manner, our system organizes the
assembling of K in units of domains. Each domain maintains its local stiffness matrices and the global
stiffness matrix is assembled and updated from these local stiffness matrices using the local update scheme
described in 6.1.

For each domain Di, our system stores three matrices: K′i, Ri and Ki. K′i is the local stiffness matrix
and is assembled from the mesh decomposed into Di in the local coordinate system. For all domains of type
R, K′i is parameterized with the three scaling factors along the XY Z axes of the local coordinate system;
for all domains of type F , K′i is directly assembled from the vertex coordinates. Ri is a rotation matrix
transforming a 3-D vector from the local coordinate system of Di to the global coordinate system. Ki is
the local stiffness matrix of Di in the global coordinate system, and is calculated by:

Ki = RiK
′
iR

T
i (19)

Ki is the matrix used to update K in the local update scheme.260

With the editing interface of our system, a domain can be modified in four manners: translation, rotation,
scaling and blend. Only domains of type R will be scaled while only domains of type F will be blended.
Translating a domain has no effects on its local stiffness matrices. Rotating a domain Di changes Ri. Scaling
a domain of type R causes our system to re-assemble K′i using parametrization. Blending a domain of type
F causes our system to re-assemble K′i directly from the new-blended vertex coordinates. If either Ri or265

K′i is changed, Ki needs to be re-calculated.
Before users begin editing, our system performs a pre-computation to initialize the simulation system.

For each domain Di, our system allocates its K′i, Ri and Ki. For each domain of type R, our system pre-
computes the coefficients used in the parametrization of K′i. And the global stiffness matrix K is allocated
and symbolically factorized. The data structure used for local update scheme is also built. As the editing270

operations in our system don’t change the topology of the mesh, the sparse matrix structures of the stiffness
matrices are re-used in subsequent updates.

When users make an edit, our system first determines the affected domains. Then for each affected
domain, our system maintains its local stiffness matrices in the manner described above. Finally K is
updated using the local update scheme.275

7. Scaling Optimization

In addition to providing the editing interface, our system can also optimize the scaling factors of domains
of type R to reduce the Von-Mises (VM) stresses in the model. The objective function of the optimization is
formulated as the difference between the vertex coordinates before optimization and the vertex coordinates
after optimization, and is minimized to preserve the shape of the mesh. Inequalities constraints are used to280

enforce that the VM stresses of the vertices are under a user specific threshold after optimization.
High stresses usually occurs at the thin parts of the mesh, and can be reduced by adjusting the thicknesses

of the mesh parts near the high stresses. With our system, thickening and thinning parts of the mesh can be
easily achieved by adjusting the scaling factors of the type R domains, thus their scaling factors become a
nature choice for optimization variables. We also observe that adjusting the thickness of a part of the mesh285

far away from the high stresses has very little effects on reducing the high stresses, so we only choose the
domains near the high stresses. We denote the set of domains used in the optimization by Dopt, a domain
Di of type R is added into Dopt if: (1) Di itself has stresses larger than the user specific threshold; or (2) Di

is adjacent to another type F domain Dj while Dj has stresses larger than the threshold. Figure 5 shows

10

Dopt

0.000
6.000
12.000
18.000
24.000
30.000
36.000
42.000
48.000
54.000
60.000

Von Mises Stress
Max: 78.370

Figure 5: Example of Dopt. Only the four domains having Von-Mises stresses above the threshold (60MPa)
are added into Dopt.

an example of Dopt. Further, for each domain in Dopt, we only use the two scaling factors along the two290

axes perpendicular to the associated bone.
We also found that directly constraining the VM stress on every vertex is inefficient, even slows down

the performance of the system to an unacceptable degree. Thus instead of constraining every vertices,
we only monitor the vertices having the maximal VM stresses. Our system dynamically maintains a set
of constrained vertices Vconstrain during the optimization and only enforces constraints on the vertices in295

Vconstrain. At the beginning of the optimization, Vconstrain only contains one vertex that has the maximal
VM stress in the whole mesh. In each iteration, whenever a vertex not in Vconstrain becomes the vertex
having the maximal VM stress, it is added into Vconstrain. In the worst case, all vertices of the mesh could
be added into Vconstrain, which is equivalent to constraining all vertices. From our test results, there are
always only several vertices in Vconstain at the end of the optimization.300

With the set of chosen domains Dopt and the set of constrained vertices Vconstrain, we formulate the
optimization as:

min ||~v(~s)− ~v(~s0)||2

s.t. ∀v ∈ Vconstrain, σvvm < σthresholdvm

(20)

where ~s is a vector containing the scaling factors of the domains in Dopt, ~s0 is a vector containing the same
scaling factors before the optimization, ~v(~s) and ~v(~s0) are the vector coordinates of the mesh scaled with ~s
and ~s0. For a vertex v in Vconstrain, σvvm is its VM stress. σthresholdvm is the user specific VM stress threshold.

For a vertex v, σvvm is calculated as [49]:

σvvm =
1√
2

((σx − σy)2 + (σy − σz)2 + (σz − σx)2 + 6(τ2
xy + τ2

yz + τ2
zx))

1
2 (21)

The terms σ and τ are the components of vertex stress ~σv. With in an element e, ~σv is calculated as:

~σv =
(
σx σy σz τxy τyz τzx

)T
= DB~ue (22)

where D and B are the stress-strain relation matrix and the strain-displacement relation matrix same as
in (3). ~ue is the vector containing the displacements of the vertices of e. Using quadratic tetrahedral305

elements, ~σv is discontinuous on the interface between two elements, thus for every vertex we calculate the
average value of its stresses within its incident elements.

As the objective function is quadratic and the constraints are non-linear, we adopt the Sequential
Quadratic Programming (SQP) method. We linearize σvvm as:

σvvm(~s + ∆~s) ≈ σvvm(~s) +
∂σvvm
∂~s

(~s)∆~s (23)

11

Then during the k-iteration, we solve the Quadratic Programming (QP) problem:

min ||~v(~sk + ∆~s)− ~v(~s0)||2

s.t. ∀v ∈ Vconstrain, σvvm(~sk) +
∂σvvm
∂~s

(~sk)∆~s < σthresholdvm

(24)

for ∆~s and update the scaling factors as:

~sk+1 = ~sk + ∆~s (25)

The partial derivative in (23) can be calculated by using the chain rule:

∂σvvm
∂~s

(~sk) =
∂σvvm
∂~σv

(~sk)
∂~σv

∂~s
(~sk) (26)

The first term in (26) is straightforward and we describe how to compute the second term. From (22), the
partial derivative of ~σv with respect to a component s of ~s is computed as:

∂~σv

∂s
(~sk) = D

∂B

∂s
(~sk)~ue(~sk) + DB(~sk)

∂~ue

∂s
(~sk) (27)

D is constant. B changes with the vertex coordinates of the element e, thus is only related to these s
affecting e. Its partial derivative is 0 for other s and we compute the non-zero ones by finite differences.

~ue is computed as a part of ~u which contains the displacements of the whole mesh. Similarly ∂~ue

∂s is

computed as a part of ∂~u
∂s . ~u is obtained by solving (1), and we adopt the sensitivity analysis technique [50]

to calculate its partial derivatives: differentiate both sides of the equilibrium equation (1) with respect to
s, then after some simple re-arrangements we get:

∂~u

∂s
(~sk) = K(~sk)−1(

∂~f

∂s
(~sk)− ∂K

∂s
(~sk)~u(~sk)) (28)

Different entries in ~f and K are contributed by different domains, thus for each s only the entries con-310

tributed by the domains changing with s have non-zero partial derivatives with respect to s. Such entries
in K can be located using the data structure for the local update scheme, as described in Section 6.1. For
entries contributed by domains of type R, their partial derivatives can be computed using the parametriza-
tion, as described in Section 5. For entries contributed by domains of type F , we compute their partial

derivatives by finite differences. ∂~f
∂s is also computed by finite differences.315

The inverse matrix K(~sk)−1 needs not to be computed explicitly, as computing A−1~y equals solving
A~x = ~y for ~x. K(~sk) could be updated using the local update scheme, and only needs to be factorized once
for each iteration.

The iterating of the optimization is determined as converged when two conditions are satisfied simul-
taneously: (1) no more new vertex is added into Vconstrain, and (2) the relative change of the objective320

function between two successive iterations is below a threshold ε. In our tests, we set ε as 1e-4. The whole
algorithm is described in Algorithm 1.

8. Error Estimation

For the purpose of interactive performance and the simple formulations of the derivative of stress to
editing parameters in optimization, our system computes the stress on each vertex by averaging operation.
To let users predict the accuracy of the analysis, our system is also able to estimate the error using the
method in [45]. First, an improved vertex stresses ~σ? are computed by solving the equation:∫

Ω

NTNdΩ ~σ? =

∫
Ω

NTDBdΩ~u (29)

12

Data: vertices set V, tetrahedrons set T , scaling factors ~s0

Result: optimized ~s
1 initialize Dopt, Vconstrain;
2 ~s = ~s0;
3 while not converge do

4 calculate
∂σv

vm

∂~s (~sk) for every v in Vconstrain using (23);
5 solve the QP problem (24) for ∆~s;
6 ~s = ~s + ∆~s;
7 update vertex coordinates V with ~s;
8 calculate Von-Mises stresses of all vertices;
9 update Vconstrain;

10 update the objective function (20);

11 end

Algorithm 1: The SQP Algorithm

where Ω represents the elements of the mesh, N is the matrix of shape functions, D and B are the stress-
strain relation matrix and strain-displacement relation matrix, and ~u is the vertex displacements solved
from (1). The percentage error η in energy norm is then computed as:

η =
||~e||
||~u||

(30)

where

||~e|| =
[∫

Ω

~eTσD−1~eσdΩ

] 1
2

, ~eσ = N~σ? −DB~u (31)

and

||~u|| =
[∫

Ω

~uTBTDB~udΩ

] 1
2

(32)

Finally η is multiplied by an empirical correction multiplying factor. Consulting the factors used in [45], we
use 1.5 for our quadratic tetrahedral element.325

9. Results

We implement our system on a desktop PC equipping an Intel i7-4770 3.4Ghz CPU and 16GB RAM.
The standard equilibrium equation (1) is solved with the Direct Sparse Solver (DSS) module of the MKL
library, through matrix factorization and back-substitution. The Quadratic Programming problem (24) is
solved using the ALGLIB library. Except the parallelism in MKL, all computations are executed in a single330

thread.
In all tests we use the typical parameters of Polylactic Acid (PLA) material, which is widely used in

3D printing. Young’s modulus is set as 2.3e9N/m2, Poisson’s ratio is set as 0.35, and density is set as
1300kg/m3. In addition to the user-specified forces, the gravity is also taken into account and the gravity
acceleration is set as 9.8m/s2. The yielding strength of PLA is about 60MPa and we use 55MPa as the335

Von-Mises stress threshold in optimization for safety. The real objects are printed by a FDM 3D printer
using the PLA material.

Figure 6 shows our experiment on an opener model. We measured the loads that an opener undertakes
when opening a beer bottle, and simulated the same loads in our system (a, b). From the analysis results
provided by our system, we were aware that the printed object might break when opening a bottle, because340

the high stresses occur at these red regions exceeded the yielding strength of the material (d). With the
editing interface of our system, we thickened parts of the mesh, balancing the structure stabilities against

13

25.0 N

175N

150N

Fixed

18 unit

3 unit

3 unit

18 unit

pivot

pivot

175N 25N

150N

25N

175 N * 3 unit = 25 N * (3 unit + 18 unit)

150 N * 3 unit = 25 N * 18 unit

175N

150N

Fixed

(a) (c) (e)

(b) (d) (f)

1.45x

0.000
6.000
12.000
18.000
24.000
30.000
36.000
42.000
48.000
54.000
60.000

Von Mises Stress
Max: 89.949

0.000
6.000
12.000
18.000
24.000
30.000
36.000
42.000
48.000
54.000
60.000

Von Mises Stress
Max: 49.523

1.2x

Figure 6: Opener experiment. (a, b) We measured the loads with an electric spring scale. The magnitude of
the forces exerted on different parts of the opener are computed by torque equilibrium. (c, d) Before editing,
our system predicted that the maximal Von-Mises stress in the model exceeded the yielding strength of the
material, and the printed object broke in the experiment. (e, f) After editing, our system predicted that the
high stresses had been reduced, and the printed object survived the experiment.

appearances. After editing, our system predicted the stresses had been reduced to a safe level (f). We
printed two real objects from the unedited mesh and the edited mesh respectively, and tested them by
opening real bottles. The opener printed form the unedited mesh broke in the test, and the position of the345

crack matches the high-stress region in the analysis result (c). The opener printed from the edited mesh
survived the test (e).

Figure 7 shows another experiment on a bird model. The leg parts of the model are thin and are easy to
break. From the analysis result provided by our system, we were aware that very high stresses would occur
if a 5N force were exerted on a leg of the model. This time we let our system optimize the mesh to enable350

the printed model to undertake the force. The experiments on the printed objects matches the prediction
of our system, as the object printed from the unedited mesh broke during the experiment, while the object
printed from the edited mesh survived the experiment.

The dinosaur model in Figure 1 is another example. We adjusted its pose using the IK tool, and scaled
its head. From the structure analysis feedback provided by our system, we knew high stresses might occur355

on the left leg of the model (d). Then we let our system optimize the mesh and the left leg are thickened to
reduce the stresses. For aesthetic reason, we manually scale the right leg to match the left leg. The edited
mesh is used to print a real object as in (f). Other two similar examples are showed in Figure 8.

Table 1 lists the size of each test 3D model. Table 2 reports the performance of our system’s underlying
solver, which is updated with the method described in Section 6.2, taking advantages of stiffness matrix360

parametrization (Section 5) and local update scheme (Section 6.1). In addition to model size, the perfor-
mance also depends on the number of tetrahedrons and vertices decomposed into domains of type R. From
the table we can see that assembling the stiffness matrix using parametrization is usually 2-3 times faster
than assembling the matrix directly from vertex coordinates using the closed-form formulas, and local up-
dating can be 6-20 times faster. For all test models, our system can provide the structure analysis feedback365

within few seconds after users make an edit.
Table 3 reports the performance of our scaling optimization algorithm described in section 7. Our

14

0.000
6.000
12.000
18.000
24.000
30.000
36.000
42.000
48.000
54.000
60.000

Von Mises Stress
Max: 164.859

0.000
6.000
12.000
18.000
24.000
30.000
36.000
42.000
48.000
54.000
60.000

Von Mises Stress
Max: 54.953

5N 5N

Before Edit After Edit

FixedFixed

1.37x

1.39x1.41x

1.53x

Figure 7: Bird experiment. Left: the object printed from the unedited model broke when a 5N force was
exerted on the leg, as predicted by our system. Right: after optimization, the printed object survived the
physical experiment. The larger ones of the two optimized scaling factors of each leg domain are marked on
the figure.

20N

1.23xFixed

Fixed
20N

5N

1.28x

Figure 8: More scenes. Left: domain decompositions and load configurations. Middle: shape editing results,
high Von-Mises stresses are presented by red color. Right: meshes after optimization, the maximal scaling
are marked on the figure.

15

Scene
Domain # Tetrahedron # Vertex #

Total R F Total R F Total R F
Opener 5 3 2 38,729 33,293 5,436 73,640 64,092 10,652

Bird 23 12 11 58,911 46,996 11,915 115,232 94,019 25,919
Horse 26 15 11 15,869 7,813 8,056 29,522 15,840 15,802

Dinosaur 27 16 11 31,409 21,158 10,251 61,407 43,163 21,549
Earphone 34 15 19 42,944 37,180 5,764 81,977 71,811 13,248

Table 1: Scene sizes. Total, R and F means number in the whole mesh, number in all domains of R and
number in all domains of type F respectively.

Scene Sparse Structure Calc Poly Coef Direct Assemble DD Assemble Solve
Opener 3.48 s 0.35 s 387 ms 103 ms / 50 ms 1.11 s

Bird 5.46 s 0.49 s 634 ms 199 ms / 23 ms 2.93 s
Horse 1.47 s 0.08 s 170 ms 121 ms / 28.6 ms 0.41 s

Dinosaur 3.15 s 0.23 s 338 ms 155 ms / 31.8 ms 0.91 s
Earphone 3.82 s 0.41 s 458 ms 119 ms / 20.9 ms 1.38 s

Table 2: The performance of our system’s underlying solver. From left to right, Sparse Structure: time
of allocating the local stiffness matrices of every domain and the global stiffness matrix, building the data
structure for local update scheme, and symbolically factorizing the global stiffness matrix. Calc Poly Coef:
time of pre-computing the polynomial coefficients of the stiffness matrix parametrization. Direct Assemble:
time of evaluating all entries in the global stiffness matrix directly from vertex coordinates. DD Assemble:
the first number is the time of evaluating all entries in the global stiffness matrix, using parametrization
for domains of type R; the second number is the time of updating the global stiffness matrix with the local
update scheme, using parametrization for domains of type R. As system updating varies according to the
editing operations, the second number is an average value of a sequence of edits similar to those editing
operations recorded in the video. Solve: time of solving the system, including numerical factorization and
back substitution.

Scene Max VM Dopt Cstr Iter Time
Opener 89.95 MPa 2 3 6 20.78 s

Bird 164.86 MPa 4 4 10 77.89 s
Horse 91.40 MPa 4 3 6 9.55 s

Dinosaur 110.62 MPa 3 2 6 18.89 s
Earphone 87.83 MPa 8 7 9 52.90 s

Table 3: The performance of scaling optimization. Max VM: the maximal Von-Mises stress of the model
before optimization. Dopt: the number of the domains in Dopt. Cstr: the number of the vertices in Vconstrain
when the optimization completes. For all these 3D models, we set the Von-Mises stress threshold as 55MPa.

16

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%

Error Estimation

Fixed

20N

Fixed
20N

Figure 9: The distribution of the percentage error in energy norm on elements.

optimization algorithm can robustly handle a large range of Von-Mises stresses, as in the bird model the
maximal Von-Mises stress is dropped from 164.86MPa to 55MPa, reduced by 66.6%. For a model of tens
of thousands of vertices, our optimizer is able to converge in tens of seconds.370

Figure 9 shows the distributions of the per-element errors of two test models, which are estimated using
the method described in Section 8. The bird model is a very fine model. The force configuration and the
analysis result is same as Figure 7 (left), and the error of the whole mesh is 6.24% while the maximal element
error is 127.3%. The horse model is relatively coarse. The force configuration and the analysis result is same
as Figure 8 (middle), and the error of the whole mesh is 14.6% while the maximal element error is 338.5%.375

As most of our test models are relatively fine and quadratic elements are used, the estimated errors of our
models are usually 5%− 15%.

10. Conclusion

In this paper, we described a shape editing system for models used in 3D printing. Our system inte-
grates FEM simulation to provide stress distribution feedback during mesh editing. Domain decomposi-380

tion is adopted as an unified interface for shape editing, FEM system updating and shape optimization.
Parametrization are used to efficiently synchronize stiffness matrices with the edited mesh, and the FEM
system is updated with a local update scheme to avoid repetitive computations. An domain-based scaling
optimization algorithm is also devised to automatically reduce high stresses while preserving mesh shape.
We tested our system with a variety of 3D models and verified its accuracy with two physical experiments.385

The major limitation of our system is that it only supports the editing of skeleton-based models, and the
editing interface is confined to domain-level translation, rotation and scaling. We are considering supporting
more editing operations and parameterizing the stiffness matrix with more geometry parameters. In addition,
our stiffness matrix parametrization only handles isotropic material. Therefore, integrating anisotropic
material properties can be an interesting future work. In some large scale editing cases, we observe that390

large deformation may degenerate or even invert some tetrahedrons, which would downgrade the accuracy
of the analysis or cause solver failure. Another possible future work can be to preserve qualities of the
tetrahedral mesh or even apply re-meshing during mesh editing.

Acknowledgement

We would like to thank the anonymous reviewers for their constructive comments; Changke Zhang for395

improving the mesh quality. This work is partially supported by NSFC (No. 61272392, No. 61272305, No.
61322204). Yin Yang is partially supported by NSF CRII 1464306 and open project of state key lab of China
of CAD&CG (A1403), and Xiaohu Guo is partially supported by Cancer Prevention & Research Institute

17

of Texas (CPRIT) under Grant No. RP110329, and National Science Foundation (NSF) under Grant Nos.
IIS-1149737 and CNS-1012975.400

References

[1] D. Dutta, F. B. Prinz, D. Rosen, L. Weiss, Layered manufacturing: Current status and future trends, Journal of Computing
and Information Science in Engineering 1 (1) (2000) 60–71.

[2] Reprap, Open-source reprap project, http://reprap.org/wiki/RepRap (2010).
[3] K. Vidimče, S.-P. Wang, J. Ragan-Kelley, W. Matusik, Openfab: A programmable pipeline for multi-material fabrication,405

ACM Trans. Graph. 32 (4) (2013) 136:1–136:12.
[4] O. Stava, J. Vanek, B. Benes, N. Carr, R. Měch, Stress relief: Improving structural strength of 3d printable objects, ACM

Trans. Graph. 31 (4) (2012) 48:1–48:11. doi:10.1145/2185520.2185544.
URL http://doi.acm.org/10.1145/2185520.2185544

[5] Q. Zhou, J. Panetta, D. Zorin, Worst-case structural analysis, ACM Trans. Graph. 32 (4) (2013) 137:1–137:12. doi:410

10.1145/2461912.2461967.
URL http://doi.acm.org/10.1145/2461912.2461967

[6] B. Bickel, M. Bächer, M. A. Otaduy, H. R. Lee, H. Pfister, M. Gross, W. Matusik, Design and fabrication of materials
with desired deformation behavior, ACM Trans. Graph. 29 (4) (2010) 63:1–63:10. doi:10.1145/1778765.1778800.
URL http://doi.acm.org/10.1145/1778765.1778800415

[7] D. Chen, D. I. W. Levin, P. Didyk, P. Sitthi-Amorn, W. Matusik, Spec2fab: A reducer-tuner model for translating
specifications to 3d prints, ACM Trans. Graph. 32 (4) (2013) 135:1–135:10. doi:10.1145/2461912.2461994.
URL http://doi.acm.org/10.1145/2461912.2461994

[8] S. Coros, B. Thomaszewski, G. Noris, S. Sueda, M. Forberg, R. W. Sumner, W. Matusik, B. Bickel, Computational design
of mechanical characters, ACM Trans. Graph. 32 (4) (2013) 83:1–83:12. doi:10.1145/2461912.2461953.420

URL http://doi.acm.org/10.1145/2461912.2461953

[9] L. Zhu, W. Xu, J. Snyder, Y. Liu, G. Wang, B. Guo, Motion-guided mechanical toy modeling, ACM Trans. Graph. 31 (6)
(2012) 127:1–127:10. doi:10.1145/2366145.2366146.
URL http://doi.acm.org/10.1145/2366145.2366146

[10] N. Umetani, K. Takayama, J. Mitani, T. Igarashi, A responsive finite element method to aid interactive geometric modeling,425

IEEE Comput. Graph. Appl. 31 (5) (2011) 43–53.
[11] C. Farhat, F.-X. Roux, A method of finite element tearing and interconnecting and its parallel solution algorithm, Inter-

national Journal for Numerical Methods in Engineering 32 (6) (1991) 1205–1227.
[12] J. Dumas, J. Hergel, S. Lefebvre, Bridging the gap: Automated steady scaffoldings for 3d printing, ACM Trans. Graph.

33 (4) (2014) 98:1–98:10. doi:10.1145/2601097.2601153.430

URL http://doi.acm.org/10.1145/2601097.2601153

[13] R. Hu, H. Li, H. Zhang, D. Cohen-Or, Approximate pyramidal shape decomposition.
[14] L. Luo, I. Baran, S. Rusinkiewicz, W. Matusik, Chopper: partitioning models into 3d-printable parts., ACM Trans. Graph.

31 (6) (2012) 129.
[15] H. Z. Y. W. Q. F. X. C. Y. S. C. T. D. C.-O. B. C. Lin Lu, Andrei Sharf, Build-to-last: Strength to weight 3d printed435

objects, ACM Trans. Graph. (Proc. SIGGRAPH) 33 (4) (2014) 97:1–97:10.
[16] W. Wang, T. Y. Wang, Z. Yang, L. Liu, X. Tong, W. Tong, J. Deng, F. Chen, X. Liu, Cost-effective printing of 3d objects

with skin-frame structures, ACM Transactions on Graphics (Proc. SIGGRAPH Aisa) 32 (5) (2013) Article 177: 1–10.
[17] M. Skouras, B. Thomaszewski, S. Coros, B. Bickel, M. Gross, Computational design of actuated deformable characters,

ACM Trans. Graph. 32 (4) (2013) 82:1–82:10. doi:10.1145/2461912.2461979.440

URL http://doi.acm.org/10.1145/2461912.2461979

[18] M. Bächer, B. Bickel, D. L. James, H. Pfister, Fabricating articulated characters from skinned meshes, ACM Trans. Graph.
31 (4) (2012) 47:1–47:9. doi:10.1145/2185520.2185543.
URL http://doi.acm.org/10.1145/2185520.2185543

[19] J. Cal̀ı, D. A. Calian, C. Amati, R. Kleinberger, A. Steed, J. Kautz, T. Weyrich, 3d-printing of non-assembly, articulated445

models, ACM Trans. Graph. 31 (6) (2012) 130:1–130:8. doi:10.1145/2366145.2366149.
URL http://doi.acm.org/10.1145/2366145.2366149

[20] M. Bächer, E. Whiting, B. Bickel, O. Sorkine-Hornung, Spin-it: optimizing moment of inertia for spinnable objects, ACM
Transactions on Graphics (TOG) 33 (4) (2014) 96.

[21] D. Ceylan, W. Li, N. J. Mitra, M. Agrawala, M. Pauly, Designing and fabricating mechanical automata from mocap450

sequences, ACM Trans. Graph. 32 (6) (2013) 186:1–186:11. doi:10.1145/2508363.2508400.
URL http://doi.acm.org/10.1145/2508363.2508400

[22] X. Chen, C. Zheng, W. Xu, K. Zhou, An asymptotic numerical method for inverse elastic shape design, ACM Transactions
on Graphics, (Proc. of SIGGRAPH 2014) 33 (4).

[23] Y. Dong, J. Wang, F. Pellacini, X. Tong, B. Guo, Fabricating spatially-varying subsurface scattering, ACM Trans. Graph.455

29 (4) (2010) 62:1–62:10. doi:10.1145/1778765.1778799.
URL http://doi.acm.org/10.1145/1778765.1778799

[24] Y. Lan, Y. Dong, F. Pellacini, X. Tong, Bi-scale appearance fabrication, ACM Trans. Graph. 32 (4) (2013) 145:1–145:12.
doi:10.1145/2461912.2461989.
URL http://doi.acm.org/10.1145/2461912.2461989460

18

http://reprap.org/wiki/RepRap
http://doi.acm.org/10.1145/2185520.2185544
http://dx.doi.org/10.1145/2185520.2185544
http://doi.acm.org/10.1145/2185520.2185544
http://doi.acm.org/10.1145/2461912.2461967
http://dx.doi.org/10.1145/2461912.2461967
http://dx.doi.org/10.1145/2461912.2461967
http://dx.doi.org/10.1145/2461912.2461967
http://doi.acm.org/10.1145/2461912.2461967
http://doi.acm.org/10.1145/1778765.1778800
http://doi.acm.org/10.1145/1778765.1778800
http://doi.acm.org/10.1145/1778765.1778800
http://dx.doi.org/10.1145/1778765.1778800
http://doi.acm.org/10.1145/1778765.1778800
http://doi.acm.org/10.1145/2461912.2461994
http://doi.acm.org/10.1145/2461912.2461994
http://doi.acm.org/10.1145/2461912.2461994
http://dx.doi.org/10.1145/2461912.2461994
http://doi.acm.org/10.1145/2461912.2461994
http://doi.acm.org/10.1145/2461912.2461953
http://doi.acm.org/10.1145/2461912.2461953
http://doi.acm.org/10.1145/2461912.2461953
http://dx.doi.org/10.1145/2461912.2461953
http://doi.acm.org/10.1145/2461912.2461953
http://doi.acm.org/10.1145/2366145.2366146
http://dx.doi.org/10.1145/2366145.2366146
http://doi.acm.org/10.1145/2366145.2366146
http://doi.acm.org/10.1145/2601097.2601153
http://dx.doi.org/10.1145/2601097.2601153
http://doi.acm.org/10.1145/2601097.2601153
http://doi.acm.org/10.1145/2461912.2461979
http://dx.doi.org/10.1145/2461912.2461979
http://doi.acm.org/10.1145/2461912.2461979
http://doi.acm.org/10.1145/2185520.2185543
http://dx.doi.org/10.1145/2185520.2185543
http://doi.acm.org/10.1145/2185520.2185543
http://doi.acm.org/10.1145/2366145.2366149
http://doi.acm.org/10.1145/2366145.2366149
http://doi.acm.org/10.1145/2366145.2366149
http://dx.doi.org/10.1145/2366145.2366149
http://doi.acm.org/10.1145/2366145.2366149
http://doi.acm.org/10.1145/2508363.2508400
http://doi.acm.org/10.1145/2508363.2508400
http://doi.acm.org/10.1145/2508363.2508400
http://dx.doi.org/10.1145/2508363.2508400
http://doi.acm.org/10.1145/2508363.2508400
http://doi.acm.org/10.1145/1778765.1778799
http://dx.doi.org/10.1145/1778765.1778799
http://doi.acm.org/10.1145/1778765.1778799
http://doi.acm.org/10.1145/2461912.2461989
http://dx.doi.org/10.1145/2461912.2461989
http://doi.acm.org/10.1145/2461912.2461989

[25] R. Prévost, E. Whiting, S. Lefebvre, O. Sorkine-Hornung, Make It Stand: Balancing shapes for 3D fabrication, ACM
Transactions on Graphics (proceedings of ACM SIGGRAPH) 32 (4) (2013) 81:1–81:10.

[26] B. Bickel, P. Kaufmann, M. Skouras, B. Thomaszewski, D. Bradley, T. Beeler, P. Jackson, S. Marschner, W. Matusik,
M. Gross, Physical face cloning, ACM Transactions on Graphics (TOG) 31 (4) (2012) 118.

[27] M. Deuss, D. Panozzo, E. Whiting, Y. Liu, P. Block, O. Sokrine-Hornung, M. Pauly, Assembling self-supporting structures,465

ACM Transactions on Graphics 33 (EPFL-ARTICLE-201940).
[28] C. Schüller, D. Panozzo, O. Sorkine-Hornung, Appearance-mimicking surfaces, ACM Transactions on Graphics (TOG)

33 (6) (2014) 216.
[29] Y. Liu, H. Pottmann, J. Wallner, Y.-L. Yang, W. Wang, Geometric modeling with conical meshes and developable surfaces,

ACM Trans. Graph. 25 (3) (2006) 681–689. doi:10.1145/1141911.1141941.470

URL http://doi.acm.org/10.1145/1141911.1141941

[30] Y. Liu, W. Xu, J. Wang, L. Zhu, B. Guo, F. Chen, G. Wang, General planar quadrilateral mesh design using conjugate
direction field, ACM Trans. Graph. 30 (6) (2011) 140:1–140:10. doi:10.1145/2070781.2024174.
URL http://doi.acm.org/10.1145/2070781.2024174

[31] K. Hildebrand, B. Bickel, M. Alexa, Crdbrd: Shape fabrication by sliding planar slices, Comp. Graph. Forum 31 (2pt3)475

(2012) 583–592. doi:10.1111/j.1467-8659.2012.03037.x.
URL http://dx.doi.org/10.1111/j.1467-8659.2012.03037.x

[32] J. McCrae, K. Singh, N. J. Mitra, Slices: A shape-proxy based on planar sections, ACM Trans. Graph. 30 (6) (2011)
168:1–168:12. doi:10.1145/2070781.2024202.
URL http://doi.acm.org/10.1145/2070781.2024202480

[33] M. Lau, A. Ohgawara, J. Mitani, T. Igarashi, Converting 3d furniture models to fabricatable parts and connectors, ACM
Trans. Graph. 30 (4) (2011) 85:1–85:6. doi:10.1145/2010324.1964980.
URL http://doi.acm.org/10.1145/2010324.1964980

[34] B. Koo, W. Li, J. Yao, M. Agrawala, N. J. Mitra, Creating works-like prototypes of mechanical objects, ACM Transactions
on Graphics (Special issue of SIGGRAPH Asia 2014).485

[35] B. Thomaszewski, S. Coros, D. Gauge, V. Megaro, E. Grinspun, M. Gross, Computational design of linkage-based char-
acters, ACM Transactions on Graphics (TOG) 33 (4) (2014) 64.

[36] Y.-J. Liu, K.-L. Lai, G. Dai, M.-F. Yuen, A semantic feature model in concurrent engineering, Automation Science and
Engineering, IEEE Transactions on 7 (3) (2010) 659–665.

[37] Y. Mori, T. Igarashi, Plushie: An interactive design system for plush toys, ACM Trans. Graph. 26 (3). doi:10.1145/490

1276377.1276433.
URL http://doi.acm.org/10.1145/1276377.1276433

[38] N. Umetani, D. M. Kaufman, T. Igarashi, E. Grinspun, Sensitive couture for interactive garment modeling and editing,
ACM Trans. Graph. 30 (4) (2011) 90:1–90:12. doi:10.1145/2010324.1964985.
URL http://doi.acm.org/10.1145/2010324.1964985495

[39] N. Umetani, T. Igarashi, N. J. Mitra, Guided exploration of physically valid shapes for furniture design, ACM Trans.
Graph. 31 (4) (2012) 86:1–86:11. doi:10.1145/2185520.2185582.
URL http://doi.acm.org/10.1145/2185520.2185582

[40] A. Toselli, O. Widlund, Domain Decomposition Methods, Springer, 2004.
[41] C. Farhat, M. Lesoinne, P. LeTallec, K. Pierson, D. Rixen, Feti-dp: a dualcprimal unified feti methodpart i: A faster500

alternative to the two-level feti method, International Journal for Numerical Methods in Engineering 50 (7) (2001) 1523–
1544. doi:10.1002/nme.76.
URL http://dx.doi.org/10.1002/nme.76

[42] J. Barbič, Y. Zhao, Real-time large-deformation substructuring, in: ACM SIGGRAPH 2011 Papers, SIGGRAPH ’11,
2011, pp. 91:1–91:8.505

[43] T. Kim, D. L. James, Physics-based character skinning using multi-domain subspace deformations, in: Proceedings of the
2011 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, SCA ’11, 2011, pp. 63–72.

[44] Y. Yang, W. Xu, X. Guo, K. Zhou, B. Guo, Boundary-aware multidomain subspace deformation, Visualization and
Computer Graphics, IEEE Transactions on 19 (10) (2013) 1633–1645.

[45] O. C. Zienkiewicz, J. Z. Zhu, A simple error estimator and adaptive procedure for practical engineerng analysis, Interna-510

tional Journal for Numerical Methods in Engineering 24 (2) (1987) 337–357.
[46] I. Baran, J. Popović, Automatic rigging and animation of 3d characters, ACM Trans. Graph. 26 (3). doi:10.1145/

1276377.1276467.
URL http://doi.acm.org/10.1145/1276377.1276467

[47] J. Tao, S. Scott, W. Joe, Mean value coordinates for closed triangular meshes, Proceedings of ACM SIGGRAPH.515

[48] O. Zienkiewicz, R. Taylor, J. Zhu, The finite element method: Its basis & fundamentals, Elsvier (August 2008).
[49] D. L. Logan, A First Course in te Finite Element Method, fifth edition, Cengage Learning, 2012.
[50] S. Arnout, M. Firl, K.-U. Bletzinger, Parameter free shape and thickness optimisation considering stress response, Struct

Multidisc Optim 45 (2012) 801–814.

19

http://doi.acm.org/10.1145/1141911.1141941
http://dx.doi.org/10.1145/1141911.1141941
http://doi.acm.org/10.1145/1141911.1141941
http://doi.acm.org/10.1145/2070781.2024174
http://doi.acm.org/10.1145/2070781.2024174
http://doi.acm.org/10.1145/2070781.2024174
http://dx.doi.org/10.1145/2070781.2024174
http://doi.acm.org/10.1145/2070781.2024174
http://dx.doi.org/10.1111/j.1467-8659.2012.03037.x
http://dx.doi.org/10.1111/j.1467-8659.2012.03037.x
http://dx.doi.org/10.1111/j.1467-8659.2012.03037.x
http://doi.acm.org/10.1145/2070781.2024202
http://dx.doi.org/10.1145/2070781.2024202
http://doi.acm.org/10.1145/2070781.2024202
http://doi.acm.org/10.1145/2010324.1964980
http://dx.doi.org/10.1145/2010324.1964980
http://doi.acm.org/10.1145/2010324.1964980
http://doi.acm.org/10.1145/1276377.1276433
http://dx.doi.org/10.1145/1276377.1276433
http://dx.doi.org/10.1145/1276377.1276433
http://dx.doi.org/10.1145/1276377.1276433
http://doi.acm.org/10.1145/1276377.1276433
http://doi.acm.org/10.1145/2010324.1964985
http://dx.doi.org/10.1145/2010324.1964985
http://doi.acm.org/10.1145/2010324.1964985
http://doi.acm.org/10.1145/2185520.2185582
http://dx.doi.org/10.1145/2185520.2185582
http://doi.acm.org/10.1145/2185520.2185582
http://dx.doi.org/10.1002/nme.76
http://dx.doi.org/10.1002/nme.76
http://dx.doi.org/10.1002/nme.76
http://dx.doi.org/10.1002/nme.76
http://dx.doi.org/10.1002/nme.76
http://doi.acm.org/10.1145/1276377.1276467
http://dx.doi.org/10.1145/1276377.1276467
http://dx.doi.org/10.1145/1276377.1276467
http://dx.doi.org/10.1145/1276377.1276467
http://doi.acm.org/10.1145/1276377.1276467

Appendix A. Complete Formulas in Stiffness Matrix Parametrization520

In this appendix we list the complete formulas derived in Section 5.
All the 9 elements of the sub-matrix Bi

TDBj are:

(BT
i DBj)00 =

E

(1 + v)(1− 2v)
((1− v)

∂Ni
∂x

∂Nj
∂x

+
(1− 2v)

2

∂Ni
∂y

∂Nj
∂y

+
(1− 2v)

2

∂Ni
∂z

∂Nj
∂z

)

(BT
i DBj)01 =

E

(1 + v)(1− 2v)
(v
∂Ni
∂x

∂Nj
∂y

+
1− 2v

2

∂Ni
∂y

∂Nj
∂x

)

(BT
i DBj)02 =

E

(1 + v)(1− 2v)
(v
∂Ni
∂x

∂Nj
∂z

+
1− 2v

2

∂Ni
∂z

∂Nj
∂x

)

(BT
i DBj)10 =

E

(1 + v)(1− 2v)
(v
∂Ni
∂y

∂Nj
∂x

+
1− 2v

2

∂Ni
∂x

∂Nj
∂y

)

(BT
i DBj)11 =

E

(1 + v)(1− 2v)
(
1− 2v

2

∂Ni
∂x

∂Nj
∂x

+ (1− v)
∂Ni
∂y

∂Nj
∂y

+
1− 2v

2

∂Ni
∂z

∂Nj
∂z

)

(BT
i DBj)12 =

E

(1 + v)(1− 2v)
(v
∂Ni
∂y

∂Nj
∂z

+
1− 2v

2

∂Ni
∂z

∂Nj
∂y

)

(BT
i DBj)20 =

E

(1 + v)(1− 2v)
(v
∂Ni
∂z

∂Nj
∂x

+
1− 2v

2

∂Ni
∂x

∂Nj
∂z

)

(BT
i DBj)21 =

E

(1 + v)(1− 2v)
(v
∂Ni
∂z

∂Nj
∂y

+
1− 2v

2

∂Ni
∂y

∂Nj
∂z

)

(BT
i DBj)22 =

E

(1 + v)(1− 2v)
(
1− 2v

2

∂Ni
∂x

∂Nj
∂x

+
1− 2v

2

∂Ni
∂y

∂Nj
∂y

+ (1− v)
∂Ni
∂z

∂Nj
∂z

)

(A.1)

So we can see the basic term in
∫∫∫

Bi
TDBjdxdydz is

c(i, j, θ1, θ2) =

∫∫∫
∂Ni
∂θ1

∂Nj
∂θ2

dxdydz, θ1, θ2 = x, y, z (A.2)

As derived in Section 5, after handling the integration using (13) c(i, j, θ1, θ2) can be expressed as

c(i, j, θ1, θ2) = α(i,j,θ1,θ2)m(θ1,θ2) (A.3)

where α(i,j,θ1,θ2) is a constant coefficient computed from the rest pose mesh, and m(θ1,θ2) is the term formed
from scaling factor sx, sy and sz. To express α(i,j,θ1,θ2), we first define some helper functions. Let

i = mid(m,n) (A.4)

expresses that the i-th node is the middle node between the m-th node and the n-th node (see Figure 3),
and

s(i,j) =

{
1
10 if i = j
1
20 if i 6= j

(A.5)

and

l(k,θ) =

bk if θ = x

ck if θ = y

dk if θ = z

(A.6)

where bk, ck and dk are computed as in (11).525

20

Then

α(i,j,θ1,θ2) =

4

9
s(i,j)l(i,θ1)l(j,θ2) −

1

36
l(i,θ1)l(j,θ2) if i, j ∈ [1, 4]

4

9
s(n,q)l(m,θ1)l(p,θ2) +

4

9
s(m,q)l(n,θ1)l(p,θ2)

+
4

9
s(n,p)l(m,θ1)l(q,θ2) +

4

9
s(m,p)l(n,θ1)l(q,θ2)

if i, j ∈ [5, 10],

and i = mid(m,n), j = mid(p, q)

4

9
s(i,q)l(i,θ1)l(p,θ2) −

1

36
l(i,θ1)l(p,θ2)

+
4

9
s(i,p)l(i,θ1)l(q,θ2) −

1

36
l(i,θ1)l(q,θ2)

if i ∈ [1, 4], j ∈ [5, 10],

and j = mid(p, q)

4

9
s(n,j)l(m,θ1)l(j,θ2) +

4

9
s(m,j)l(n,θ1)l(j,θ2)

− 1

36
l(m,θ1)l(j,θ2) −

1

36
l(n,θ1)l(j,θ2)

if i ∈ [5, 10], j ∈ [1, 4],

and i = mid(m,n)

(A.7)

Finally, m(θ1,θ2) is expressed as:

m(θ1,θ2) =

s2
ys

2
z

sxsysz =
sysz
sx if θ1 = x, θ2 = x

s2
xs

2
z

sxsysz = sxsz
sy if θ1 = y, θ2 = y

s2
xs

2
y

sxsysz =
sxsy
sz if θ1 = z, θ2 = z

sxsys
2
z

sxsysz = sz if θ1 = x, θ2 = y or θ1 = y, θ2 = x

s2
xsysz
sxsysz = sx if θ1 = y, θ2 = z or θ1 = z, θ2 = y

sxs
2
ysz

sxsysz = sy if θ1 = z, θ2 = x or θ1 = x, θ2 = z

(A.8)

21

	Introduction
	Related Work
	System Overview
	Pre-processing
	Stiffness Matrix Parametrization
	FEM System Updating
	Local Update Scheme
	System Updating

	Scaling Optimization
	Error Estimation
	Results
	Conclusion
	Complete Formulas in Stiffness Matrix Parametrization

