
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

CVM PAPER ID: 0041.

An Interactive Approach for Functional Prototype Recovery from a Single
RGBD Image

Anonymous cvm submission

Paper ID 0041

Abstract

Inferring the functionality of an object from a sin-
gle RGBD image is hard. The difficulties are two-fold:
the lack of semantic information of the image object;
and the missing data due to occlusion. In this paper,
we present an interactive framework to recover the 3D
functional prototype from a single RGBD image. In-
stead of precisely reconstructing the object geometry for
the prototype, we focus more on recovering the objec-
t functionality along with their geometry. Essentially,
our system allows users to scribble on the image to cre-
ate initial rough proxies for the parts. Then after the
user annotation of high-level relations among parts, our
system automatically optimizes the detailed junction pa-
rameters (axis & position) and part geometry parame-
ters (size & orientation & position) together. Such re-
covery of prototype enables a better understanding of
the underlying image geometry and allows for further
physical plausible manipulation. We demonstrate our
framework on various indoor scene objects with simple
or hybrid functions.

1. Introduction

That form ever follows function. This is the law.

Louis Sullivan

With the popularization of commercial RGBD cameras
such as Microsoft’s Kinect, people can easily acquire 3D
geometry information for the RGB image. However, due
to occlusion and noise, recovering meaningful 3D contents
from single RGBD images remains one of the most chal-
lenging problems in computer vision and computer graphics
research.

Over the past years, many researches have been devoted
to recovering high-quality 3D information from RGBD im-
ages [9, 7]. Most of these approaches, starting either from
a single image or multiple images, are dedicated to recov-
ering the faithful 3D geometry of image objects, regardless
of their semantic relations, underlying physical settings, or

even functionality. In recent, researches have been devel-
oped to explore high-level structural information to facil-
itate 3D reconstruction [26, 19, 18]. For example, Shao et
al. [18] leverage physical stability to hallucinate the interac-
tions among images objects and obtain physically plausible
reconstruction of objects in RGBD images. Such high-level
semantic information plays an important role in constrain-
ing the underlying geometric structure.

Functionality is to the central of object design and un-
derstanding. Objects in man-made environments are often
designed for one or multiple intended functionalities (Fig-
ure 1). That form ever follows function is the law of physical
manufacturing [20]. In this paper, we develop an interac-
tive system to recover functional prototypes from a single
RGBD image. Our goal is to allow a novice user to be able
to quickly lift the image objects into 3D using 3D proto-
types, with just a small amount of high-level annotation-
s of junction types and geometric/functional relations; and
meanwhile explicitly explore and manipulate its function.
We focus on prototypes with simple proxies (e.g. cuboids)
representing parts as a means to alleviate the difficulties in
precise 3D reconstruction which is a harder problem. And,
by taking into consideration of physical functionality, we
could gain a much more faithful interpolation of the under-
lying objects. The functional properties could further be
used for applications such as in-context design and manip-
ulation.

It is a challenging problem to infer object function
just from user annotated junction types and geomet-
ric/functional relations. Our system should automatically

Figure 1. Objects in man-made environments are often designed
for one or multiple intended functionalities.

1

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

CVM PAPER ID: 0041.

hinge junction

equal size

sliding junctionsliding junction

hinge junction

cover

equal size

just fit inside

Figure 2. Algorithmic pipeline. Given the input RGBD image (left), our system generates initial proxy cuboids (middle-left) from the
parts segmented by user with strokes or polygon tools. Then the user annotates a set of high-level relations among the proxies including
junction types and geometric/functional relations (middle-right). Finally our system simultaneously optimizes the junction parameters
(axis & position) and the part parameters (orientation, position and size) to get the functional prototype with parts moving as user expected
(right).

optimize the detailed junction parameters (axis & position)
in order to make the parts move correctly, whereas this task
is typically done in CAD softwares by carefully adjusting
the parameters by the user. Besides, initial proxies from
user-segmented depth is rather rough with incorrect orien-
tation and position, and would be much smaller than real
size because of occlusion. Hence initial proxies often fail to
satisfy the functional relations such as A covers B. There-
fore our system should also optimize the proxy parameters
(size & orientation & position), in order to make parts sat-
isfy functional relations.

Our method starts with a single RGBD image. We let
the user segment the image object into parts by scribbling
on the image using simple strokes or polygons. Then each
segmented part is assembled with a 3D proxies. We use sim-
ple cuboid in this paper [12]. Given the initial proxies, our
system then allows the user to annotate the junction type-
s and functional/geometric relations among parts. In a key
stage, our algorithm simultaneously optimizes the detailed
junction parameters (axis & position) and the proxy param-
eters (size & orientation & position). Finally, a functional
prototype is produced with moving parts satisfying the user
annotated relations.

We tested our system on a variety of man-made hybrid
functional objects taken from various sources. Our results
show that even with only a few user annotations, our algo-
rithm is capable of faithfully inferring geometry along with
the functional relations of the object parts. In summary, this
paper makes the following contributions:

• identifying and characterizing the problem of integrat-
ing functionality into image-based reconstruction;

• simultaneous optimization of detailed junction and ge-
ometry parameters from user’s high-level annotation
of junction types and functional/geometric relations;

• developing an interactive tool for functional annota-
tion, and testing in on a variety of indoor scene images
and physical designs.

2. Related Work

Proxy-based analysis. There has been a significant amoun-
t of work that leverages proxies to understand object-
s or scenes. Li et al. [14] and Lafarge et al. [13] con-
sider global relationships as constraints to optimize ini-
tial RANSAC-based proxies to produce structured output-
s; similarly, Arikan et al. [1] use prior relations plus user
annotations to create abstracted geometry. For scene anal-
ysis, a lot of approaches encode input scenes as collections
of planes, boxes, cylinders, etc. and studying their spatial
layout [5, 6, 8, 10, 11, 25]. Recently, proxies were com-
monly used for functionality analysis of a design. Umetani
et al. [21] use physical stability and torque limits for guided
furniture design in a modeling and synthesis setting. Shao
et al. [17] create 3D proxy models from a set of concep-
t sketches that depict a product from different viewpoints
and with different configurations of moving parts. Koo et
al. [12] annotate cuboids with high-level functional rela-
tionships to fabricate physical works-like prototypes. D-
ifferent from these approaches, to our knowledge, we are
the first to focus on the proxy-based functionality recovery
from a single RGBD image, particularly recovering how the
object works by jointly optimizing the part geometry along
with functional relationships based on user annotations.

Constraint-based modeling. Our work is related to the
constraint-based modeling research in the graphics and
CAD communities. Similar graphics work involves auto-
matically determining the relevant geometric relationship-
s between parts for high-level editing and synthesis of
3D models [4, 22, 2, 26]. Previous mechanical engineer-
ing research introduces declarative methods for specify-

2

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

CVM PAPER ID: 0041.

Figure 3. Initial proxy generation. The user is allowed to scrib-
ble strokes on the image (left), and based on the scribbles, depth-
augmented GrabCut is applied to segment the input object to dif-
ferent parts (middle). Initial cuboids are then fitted to the corre-
sponding points (right).

ing the relevant geometric constraints for a mechanical de-
sign [3, 24]. Some professional CAD softwares like Au-
toCAD and SolidWorks contain constraint-based modeling
modules, but the users are required to manually adjust the
low-level part/junction parameters to specify the relation-
ships. In contrast, our system can automatically interpret
the user annotated high level functionalities into the specif-
ic geometric constraints.

3D modeling from single RGBD images. Much effort has
been devoted to obtaining high-quality geometry informa-
tion from a single RGBD image [23, 7]. To recover struc-
ture information, Shen et al. [19] extract suitable model
parts from a database, and compose them to form high qual-
ity models from one RGBD image. Shao et al. [18] adopt
physical stability to recover unseen structures from a single
RGBD image using cuboids. However, their techniques fo-
cus on creating static 3D geometry and structure, whereas
our goal is to produce models with correctly moving parts.

3. Overview

As illustrated in Figure 2, given a single RGBD image,
we first let the user scribble strokes over the image objects
to cut out functional parts of the object. Those parts, be-
ing either a semantic component or an additive object, will
finally take place in the function recovery. To segment the
parts, we use a depth-augmented version of the GrabCut
segmentation [15] similar to [18]. Optionally, if the color
and depth are too similar which makes it difficult to sep-
arate the parts with GrabCut, we provide a polygon tool
like PhotoShop to do segmentation (see in accompanying
video). We assemble a set of proxies (cuboids in our case)
to fit each individual part. We then let the user annotated
the high-level relations among these cuboids. The relations
consist of three categories: junction relations (e.g., hinge,
sliding), functional relations (e.g., cover, fit inside, support,
flush, connect with) [12], and geometric relations (e.g., e-
qual size, symmetry).

Given the user annotated relations, in a key step, our
method recovers the cuboid orientation, position and size
along with the junction parameters using a joint optimiza-

tion. We choose the joint optimization strategy because the
cuboid parameters are always coupled with the junction pa-
rameters. That is, given a set of junctions, the cuboid ge-
ometry should change accordingly to satisfy the functional
constraints.

The optimization is done using a two-stage sampling s-
trategy. In the first stage, our algorithm samples possible
cuboid edges as junction candidates [17] for the specified
junction type. Given one set of possible junction candidates,
the orientation of the cuboids can be aligned and the posi-
tions can be refined by adjusting the corresponding junction
edges. We assume that the junction must be snapped to the
nearest cuboid face and be parallel to the nearest cuboid
edge (as in [12]).

With one set of adjusted junctions and cuboid orientation
and position, our method further samples a set of possible
candidate rest configurations for the cuboids. A rest config-
uration is a state where the object is in a closed state [12].
Because the cuboid size is not certified yet, the system does
not known which state is the closed state. Thus we sam-
ple possible candidates for the rest configurations, as shown
in Figure 6. For each possible rest configuration, we opti-
mize the cuboid size parameters according to the user anno-
tated functional/geometric relations as in [12]. Finally, the
optimized cuboids which lead to the minimal difference a-
gainst the initial point cloud are selected, and the best proto-
type with best junction and cuboid parameters is produced.
We next describe the detailed algorithm.

4. Algorithm

Our method takes as input a RGBD image of a functional
object. By functional we refer to objects those have partic-
ular moving parts, such as rotatable cover, slidable window,
etc. Such objects are very commonly seen in our daily life,
for instances, rolling chairs, foldable tables, printers, see-
saw etc. In addition, such objects populate our man-made
environments, especially indoor scenes.

Initial cuboids generation. Given the input RGBD im-
age, our first task is to anchor the object functional part-
s. Automatically identify image object and object parts in
RGBD images has been explored in recent methods, how-
ever, without any prior knowledge the performance is still
not satisfactory for our purposes. We resort to an interac-
tive solution. As in [18], we let the user to scribble on the
image object to specify object parts. In particular, we allow
the user to draw free strokes over parts to indicate a seg-
ment (part). We perform the depth-augmented GrabCut al-
gorithm [18] to the underlying point cloud along with their
pixel and adjacency information. Optionally, if the color
and depth are too similar which makes it difficult to sepa-
rate the parts with GrabCut, we provide a polygon tool like
PhotoShop to do segmentation. We then run the Efficient
RANSAC algorithm [16] on the selected points to generate

3

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

CVM PAPER ID: 0041.

Figure 4. User annotated junction types and some typical function-
al relations. From left to right: hinge junction, sliding junction,
exactly cover, just fit in, and support.

candidate planes. The largest of the planes is selected as
the primary plane, and the second largest plane is made or-
thogonal to the primary one. We extract the initial cuboids
determined by these orthogonal directions (third direction
is the cross product of the two plane normals). Figure 3 il-
lustrates the process of generating the initial cuboids. Note
that the generated cuboids have erroneous orientations, po-
sitions and sizes. In the next steps, our goal is to simulta-
neously optimize these parameters along with the junction
parameters so that the extracted cuboids form a prototype
whose functionality closely follows the image object.

Relation annotation. Denote the set of initial cuboids as
(B1, ..., BN), in an important step, we let the user to anno-
tated the high-level relations among cuboids. To this end,
we define three categories of relations. Category I is the
junction relations (types) (e.g., A has a hinge relation w.r.t.
B), and Category II is functional relations (e.g., A covers
B) and Category III is geometric relations (e.g., symmetry,
equal size, etc.). To specify the Category I relation, the user
selects a pair of cuboids and right click a button to indicate
a junction type. The same interface is used for Category II
and III.

To further classify the relations, we define two main
types of junction relations, namely, hinge and sliding. For
functional relations, similar to [12], we define the following
function types: A covers B, A fits inside B, A supports B, A is
flush with B, and A connects with B. For geometric relations,
we mainly use 2 types: symmetry and equal size. These re-
lations pose different geometric constraints on the following
optimization stage and some relations might be dependent
on each other. For example, if both A and C covers B, A
is geometrically constrained w.r.t. B and C. Figure 4 shows
the junction types and some typical types of functional re-
lations. Note that unlike the method of [12], we do not need
to explicitly specify the junction position and axis as well
as cuboid orientations and positions, instead, we optimize
these parameters in a joint manner.

Joint optimization of cuboids and junctions. We now
detail our cuboid optimization algorithm. Our goal is to
jointly optimize the cuboid orientation and their shape pa-
rameters (i.e., positions, sizes) as well as the detailed junc-
tion parameters according to the user annotated relation-
s. The optimized cuboid configuration should deviate lit-
tle from the input point cloud and move correctly as user
expected. Essentially, given the input point cloud I and
initial cuboids B = (B1, ..., BN), along with the user an-

...

... ...

...

hinge

slide

Junction: J1 Junction: J2

Junction: J3
Junction: J4

Θ1
m

Θ1
2

Θ2
1

Θ2
2

Θ1
1

Θ2
n

Θ3
1

Θ3
2

Θ3
p

Θ4
1

Θ4
2

Θ4
q

Figure 5. Junction configuration graph. Each cuboid corresponds
to the node with the same color, while each annotated junction
type corresponds to the multiple connections between nodes. One
connection is associated with one candidate junction parameter.

notated junction types J = (J1, ..., JM), functional re-
lations F = (F1, ..., FP) and geometric relations G =
(G1, ..., GQ), we want to obtain the best junction param-
eters Θ∗ = (Θ∗1, ...,Θ

∗
M) for the junction types J along

with the best cuboids B∗ = (B∗1 , ..., B
∗
N), satisfying the

functional relations F and geometric relations G. The for-
mulation is defined as:

argmin
B,Θ

E(B,Θ, I) s.t. B,Θ satisfy J ,F ,G. (1)

Here E(B,Θ, I) measures the deviation from the optimized
cuboid configuration to the input point cloud, which is de-
fined as

E(B,Θ, I) =
∑
j

∑
k

dist(Bj − pkj), (2)

where
∑

k dist(Bj − pkj) gives the deviation from cuboid
Bj to its containing points pkj .

The challenge is how to wrap down the annotated rela-
tions to geometric constraints while retaining the cuboids’
conformity with respect to the input point cloud. Since the
annotated relations are high level specifications, this leads
to large search space in the optimization due to the poten-
tial ambiguities raised from the loose annotations. Another
challenge is that the cuboid parameters are highly coupled
with the junction parameters. That is, given a set of junc-
tions, the cuboid geometry should change accordingly to
satisfy the functional constraints. Thus we cannot optimize
the parameters locally and separately, but instead do it in a
global manner. To solve the above challenges, we device a
multi-stage optimization paradigm to first populate the so-
lution space with a two-step sampling algorithm and then
jointly optimize the cuboid parameters and junction param-
eters.

In the first stage, we sample the possible junction’s pa-
rameters, i.e., axial position and orientation. Let us denote
the set of junction types as (J1, ..., JM), and the parameters
we wish to estimate as (Θ1, ...,ΘM). We start by building
a junction configuration graph. For each cuboid we create
a graph node and for each junction type Ji, we create mul-
tiple graph connections, with each connection associating

4

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

CVM PAPER ID: 0041.

Figure 6. Possible rest poses for the hinge junctions. Since we
don’t know which face of the cabinet door should cover the cabi-
net, we rotate the hinge junctions to sample a set of rest configura-
tions to guess possible covering faces. (Figure 6)

with a candidate parameter Θl
i for Ji. If A forms a hinge

relation with B, each cuboid edge of A can be a candidate
hinge axis. We choose only those cuboid edges which are
closely attained to B. More specially, we only choose the
edges parallel to the face if there is also a cover relation,
and only choose the edges perpendicular to the face if there
is a fit inside or support relation. This leads to a configura-
tion graph where any traversal path of the graph represents
a possible configuration of junctions. Figure 5 shows such
a graph. Algorithm 1 gives the pseudo-code of this state.

Given the junction configuration graph, for each junction
configuration we optimize the cuboids orientation, position
and size based on annotated functional/geometric relations.
The cuboid orientation and position is firstly adjusted based
on the current candidate junction configuration, by adjust-
ing the corresponding junction edges. We assume that the
junction must be snapped to the nearest cuboid face and be
parallel to the nearest cuboid edge (as in [12]). Then we
optimize the cuboid size to satisfy the functional/geometric
relations from current junction configuration. Note that the
functional relations typically indicate the geometry of the
cuboids satisfying certain constraints in a closed configu-
ration (i.e., a rest configuration [12]. For an instance, if A
covers B, this typically means that one face of A is rotat-
ed about the hinge junction to be in close agreement with
a face of B (Figure 6). Since we don’t know which face
covers B, we enumerate through multiple possible cuboid
faces to sample a set of rest configurations (Figure 6) and
for each rest configuration we optimize the cuboid param-
eters. In specific, given a rest configuration of cuboids, we
employ a similar optimization method of [12] to optimize
the cuboid parameters (B∗1 , ..., B

∗
N). We then compute the

optimization cost from Eq. (2). Finally, the configuration
which leads to the least deviation from the point cloud is
selected as the best configuration and the optimized cuboid-
s are then computed. The overall algorithm is detailed in
Algorithm 2.

5. Results

We used our system to recover functionality prototype-
s for 6 different objects (Figure 7). The first 4 examples
(cabinet, drawer, firebox and chair) are real RGBD images
captured with Microsoft Kinect, while the last 2 examples
(toolbox and dining table) are synthetic depth data captured

Algorithm 1 Building Junction Configuration Graph
Input: N initial cuboids (B1, ..., BN); M junctions (J1, ..., JM)
with unknown parameters (Θ1, ...,ΘM);
Output: Multi-connection junction Graph G := (V,E), where
each connection eji corresponds to a parameter Θj

i for Ji;
G← ∅
for i = 1 to N do
Vi ← Bi

end for
/*** Building multi-connections between nodes ***/
for i = 1 to M do
Bc ← child cuboid of Ji
Bp ← parent cuboid of Ji
l← 1
/*** Test each edge of the child cuboid ***/
for j = 1 to 12 do
Ej ← j-th edge of Bc

Dj ← direction of Ej

Cj ← center of Ej

for k = 1 to 6 do
Fk ← k-th face of Bp

Nk ← normal of Fk

if dist(Ej , Fk) < εd and abs(dot(Dj , Nk)) < εa and
abs((dot(Dj , Nk)− 1) < εa then

Θl
i ← (Cj , Dj) //set candidate parameter for the Ji

eli ← Θl
i //add a connection eli

l← l + 1
end if

end for
end for

end for

from existing 3D designs. Please check our submission
video to see how the various parts move and fit together.
Creating one functional prototype took 0.5-5 minutes for
our experimental examples. The time for user interaction
(segmenting points with strokes and specifying part rela-
tionships, plus the waiting time for the plane detection for
initial cuboid generation) ranges from 27 seconds to 108
seconds, and the optimization time varies a lot from 1 sec-
ond to 241 seconds, depending on the sampling space of
junction parameters and rest poses. The experimental statis-
tics are listed in Table 1.

As shown in Figure 2, though the geometry of our pro-
totypes may appear simple, the relationships between the
moving parts are often complex. Adjusting the geometry
and relation parameters would be rather time consuming
and labor consuming. Our system automatically infer the
junction parameters (position & axis) and the geometry pa-
rameters (size & position & orientation) by jointly optimiz-
ing them together under the user annotated high-level con-
straints. All the desired part parameters and junction pa-
rameters are obtained in our experiment data. For exam-
ple, in Figure 7 (1), our algorithm automatically place the

5

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

CVM PAPER ID: 0041.

(1
) C

ab
in

et
(2

) D
ra

w
er

(3
) F

ir
eb

ox
(4

) C
ha

ir
(5

) T
oo

lb
ox

(6
) D

in
in

g
ta

bl
e

Figure 7. Experimental results. From left to right: the input RGBD image, initial cuboids, optimized cuboids and junctions, and how parts
move and fit after the optimization (3 configurations).

hinge junctions to the correct edges of the cabinet doors, and
adjust their orientations accordingly by aligning the hinge
junctions onto the nearest cabinet face and make them par-
allel to the nearest cabinet edges. The size of the doors are
also optimized to be equal size and cover the cabinet. The
drawers in Figure 7 (1) and (2) obtain the desired orientation
by aligning their sliding junctions with the cabinet, and the
size is optimized to just fit inside the cabinet and be equal.
In Figure 7 (3), the top cap and the front door are both op-
timized to just cover to the boundary of the firebox. For the
chair example (Figure 7 (4)), due to occlusion, the initial

cuboids for the leg and the armrest have smaller size than
real, but our algorithm successfully extend the leg to sup-
port the seat, and extend the armrests to connect with the
back. Similarly, the occluded leg in Figure 7 (5) is extended
to support the box and has the same size as other legs. In
Figure 7 (6), the orientation and the size of the two doors
are optimized to support the table top, and the orientation
of the top is optimized to be horizontal.

User study. To better evaluate whether our approach can
recover correct functional prototypes, we showed our sys-

6

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

CVM PAPER ID: 0041.

Algorithm 2 Optimizing cuboids and junctions
Input: input point cloud I; N initial cuboids B = (B1, ..., BN);
junction configuration graph G; functional relations F ; geometric
relations G
Output: N optimized cuboids B∗ = (B∗1 , ..., B

∗
N); M optimized

junction parameters Θ∗ = (Θ∗1, ...,Θ
∗
M);

/*** Sampling candidate junction parameters from G and ac-
cordingly optimizing the cuboid orientation, position and size
***/
err ← INF //deviation from cuboids to input point cloud
while 1 do

Gather an connection combination (ek1 , ..., e
l
M) from G

if no more connection combination then
break

end if
Create junctions with parameters Θ′ = (Θk

1 , ...,Θ
l
M) from

(eki , ..., e
l
M)

adjust the cuboid position and orientation by snapping the
junction edge
/*** Calculating possible angles for rest configurations ***/
for i = 1 to M do

calculate candidate angles (α1
i , ..., α

w
i) to parallelize par-

ent and child
end for
/*** Sampling possible rest configurations ***/
while 1 do

Gather an angle combination (αu
1 , ..., α

v
M)

if no more angle combination then
break

end if
Transform to rest configuration with (αu

1 , ..., α
v
M)

Optimizing the cuboid size satisfying F and G to get an
solution B′ = (B′1, ..., B

′
N)

if E(B′,Θ′, I) < err then
err ← E(B′,Θ′, I)
(B∗1 , ..., B

∗
N)← (B′1, ..., B

′
N)

(Θ∗1, ...,ΘM∗)← (Θk
1 , ...,Θ

l
M)

end if
end while

end while

tem to 20 students. 5 of them are undergraduate major-
ing in computer science, and another 4 students are master
candidates in industry design. The rest ones are 8 master
candidates and 3 PhD candidates in computer science. We
showed them the captured RGBD images and asked them
to imagine how the objects work. Then these students used
our system to add annotations to the pre-generated initial
cuboids based on their imagination. All the students report-
ed that our system successfully recovers the functional pro-
totypes with the parts moving as they expected. Besides,
the optimized part geometry also satisfies their imagina-
tion. One exception is that 6 students said they imagined
the hinge junction on the cabinet door (Figure 7 (1)) was
exactly on the boundary edge of the cabinet, while our op-

Model Hinge Slide Fxn Geom Int. Time (s) Opt. Time (s)
Cabinet 2 2 4 2 62 18
Drawer 0 2 2 1 29 1
Fire box 2 0 2 0 27 16

Chair 2 0 3 0 90 2
Tool box 1 3 6 0 108 3

Dining table 4 0 6 2 55 241

Table 1. Statistics for recovered functional prototypes.

timization did not consider it as the best configuration.

Comparison with real objects and 3D design models. We
also check the recovered prototypes with the captured re-
al objects and 3D design models. As illustrated in the top
2 rows in Figure 8, the generated prototypes have similar
functionality as the real objects, and they can move parts
to generate almost the same configurations as the real ones.
Besides, the optimized simple cuboids can approximate the
real geometry well, with almost the same size, orientation
and position. We also compare our recovered prototype-
s with the 3D design models whose junctions are added
and adjusted manually in Autodesk 3ds Max (bottom row
in Figure 8). We can see our recovered prototype from us-
er’s high-level annotation has very similar functionality as
the manually designed model.

6. Conclusions

In this work, we present a novel approach to recover
functional prototypes from user’s high-level annotations on
relationships. By providing the junction types and other
functional/geometric relations, the junction parameters and
part geometry parameters are jointly optimized. With such
interface, we allow users to focus on the functional goals of
the target object rather than working on low-level geometry
and junction parameters. Our results demonstrate that our
system can generate functional models with a small number
of user annotations. In the user study, the recovered proto-
types work correctly as the users expected. The comparison
with the real objects and 3D design models also prove the
feasibility of our system.

Limitations and future work. The main limitation of our
approach is that we use cuboids as proxies to approximate
the part geometry. While compositions of cuboids are suf-
ficient for the understanding of functionality of many prod-
ucts, users often like higher fidelity geometry to better un-
derstand the geometry and relationships. Similarly, the re-
stricted set of junction types is another limitation. In the
future, we will add other primitives for part proxy, such as
cylinder and sphere. We also plan to integrate more junc-
tion types between parts, like ball junctions and simple me-
chanical units. Current optimization framework may need
to be modified to handle more geometry and junctions. An-
other future direction is to consider other high-level func-

7

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

CVM PAPER ID: 0041.

Figure 8. Top two rows: comparison result with the captured real data; bottom row: comparison result with the 3D design model. We can
see that our system can faithfully recover the functionality as user expected.

tional constraints among parts. Exploring more high-level
relationships would help the further exploration of the func-
tionality as well as the geometric properties.

References

[1] M. Arikan, M. Schwärzler, S. Flöry, M. Wimmer, and
S. Maierhofer. O-snap: Optimization-based snapping for
modeling architecture. ACM TOG, 32(1):6:1–6:15, 2013. 2

[2] M. Bokeloh, M. Wand, H.-P. Seidel, and V. Koltun. An al-
gebraic model for parameterized shape editing. ACM Trans.
Graph., 31(4):78:1–78:10, July 2012. 2

[3] M. Daniel and M. Lucas. Towards declarative geometric
modelling in mechanics. In P. Chedmail, J.-C. Bocquet,
and D. Dornfeld, editors, Integrated Design and Manufac-
turing in Mechanical Engineering, pages 427–436. Springer
Netherlands, 1997. 3

[4] R. Gal, O. Sorkine, N. J. Mitra, and D. Cohen-Or. i-
wires: An analyze-and-edit approach to shape manipulation.
ACM Transactions on Graphics (Siggraph), 28(3):#33, 1–10,
2009. 2

[5] A. Gupta, A. A. Efros, and M. Hebert. Blocks world re-
visited: Image understanding using qualitative geometry and
mechanics. In ECCV, 2010. 2

[6] A. Gupta, M. Hebert, T. Kanade, and D. M. Blei. Estimat-
ing spatial layout of rooms using volumetric reasoning about
objects and surfaces. In J. Lafferty, C. Williams, J. Shawe-
Taylor, R. Zemel, and A. Culotta, editors, Advances in Neu-
ral Information Processing Systems 23, pages 1288–1296.
Curran Associates, Inc., 2010. 2

[7] Y. Han, J.-Y. Lee, and I. S. Kweon. High quality shape from
a single rgb-d image under uncalibrated natural illumination.
In Proceedings of the 2013 IEEE International Conference
on Computer Vision, ICCV ’13, pages 1617–1624, Washing-
ton, DC, USA, 2013. IEEE Computer Society. 1, 3

[8] E. Hartley, B. Kermgard, D. Fried, J. Bowdish, L. D. Per-
o, and K. Barnard. Bayesian geometric modeling of indoor
scenes. IEEE CVPR, pages 2719–2726, 2012. 2

[9] S. Izadi, D. Kim, O. Hilliges, D. Molyneaux, R. Newcombe,
P. Kohli, J. Shotton, S. Hodges, D. Freeman, A. Davison, and
A. Fitzgibbon. Kinectfusion: Real-time 3d reconstruction
and interaction using a moving depth camera. In Proceed-
ings of the 24th Annual ACM Symposium on User Interface
Software and Technology, UIST ’11, pages 559–568, New
York, NY, USA, 2011. ACM. 1

[10] Z. Jia, A. Gallagher, A. Saxena, and T. Chen. 3d-based rea-
soning with blocks, support, and stability. In IEEE CVPR,
pages 1–8, 2013. 2

[11] H. Jiang and J. Xiao. A linear approach to matching cuboids
in rgbd images. In IEEE CVPR, 2013. 2

[12] B. Koo, W. Li, J. Yao, M. Agrawala, and N. J. Mitra. Cre-
ating works-like prototypes of mechanical objects. ACM
Transactions on Graphics (Special issue of SIGGRAPH A-
sia 2014), 2014. 2, 3, 4, 5

[13] F. Lafarge and P. Alliez. Surface reconstruction through
point set structuring. In Proc. of Eurographics, Girona, S-
pain, 2013. 2

[14] Y. Li, X. Wu, Y. Chrysanthou, A. Sharf, D. Cohen-Or, and
N. J. Mitra. Globfit: Consistently fitting primitives by dis-
covering global relations. ACM SIGGRAPH, 30(4), 2011.
2

[15] C. Rother, V. Kolmogorov, and A. Blake. ”grabcut”: inter-
active foreground extraction using iterated graph cuts. ACM
SIGGRAPH, 23(3):309–314, 2004. 3

[16] R. Schnabel, R. Wahl, and R. Klein. Efficient ransac for
point-cloud shape detection. Computer Graphics Forum,
26(2):214–226, June 2007. 3

[17] T. Shao, W. Li, K. Zhou, W. Xu, B. Guo, and N. J. Mitra. In-
terpreting concept sketches. ACM Transactions on Graphics,
32(4), 2013. 2, 3

8

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

CVM PAPER ID: 0041.

[18] T. Shao, A. Monszpart, Y. Zheng, B. Koo, W. Xu, K. Zhou,
and N. J. Mitra. Imagining the unseen: Stability-based
cuboid arrangements for scene understanding. ACM Tran-
s. Graph., 33(6):209:1–209:11, Nov. 2014. 1, 3

[19] C.-H. Shen, H. Fu, K. Chen, and S.-M. Hu. Structure re-
covery by part assembly. ACM Trans. Graph., 31(6):180:1–
180:11, Nov. 2012. 1, 3

[20] L. Sullivan. The tall office building artistically considered.
Lippincott’s Magazine, 57, 1896. 1

[21] N. Umetani, T. Igarashi, and N. J. Mitra. Guided exploration
of physically valid shapes for furniture design. ACM SIG-
GRAPH, 31(4):86:1–86:11, 2012. 2

[22] W. Xu, J. Wang, K. Yin, K. Zhou, M. van de Panne, F. Chen,
and B. Guo. Joint-aware manipulation of deformable mod-
els. ACM Trans. Graph., 28(3):35:1–35:9, July 2009. 2

[23] H. Yu. Edge-preserving photometric stereo via depth fusion.
In Proceedings of the 2012 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), CVPR ’12, pages
2472–2479, Washington, DC, USA, 2012. IEEE Computer
Society. 3

[24] P.-A. Yvars. Using constraint satisfaction for designing me-
chanical systems. International Journal on Interactive De-
sign and Manufacturing (IJIDeM), 2(3):161–167, 2008. 3

[25] B. Zheng, Y. Zhao, J. C. Yu, K. Ikeuchi, and S.-C. Zhu. Be-
yond point clouds: Scene understanding by reasoning geom-
etry and physics. In IEEE CVPR, 2013. 2

[26] Y. Zheng, X. Chen, M.-M. Cheng, K. Zhou, S.-M. Hu, and
N. J. Mitra. Interactive images: Cuboid proxies for smart
image manipulation. ACM SIGGRAPH, 31(4):99:1–99:11,
2012. 1, 2

9

