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Abstract

Inferring the functionality of an object from a sin-
gle RGBD image is hard. The difficulties are two-fold:
the lack of semantic information of the image object;
and the missing data due to occlusion. In this paper,
we present an interactive framework to recover the 3D
functional prototype from a single RGBD image. In-
stead of precisely reconstructing the object geometry for
the prototype, we focus more on recovering the objec-
t functionality along with their geometry. Essentially,
our system allows users to scribble on the image to cre-
ate initial rough proxies for the parts. Then after the
user annotation of high-level relations among parts, our
system automatically optimizes the detailed junction pa-
rameters (axis & position) and part geometry parame-
ters (size & orientation & position) together. Such re-
covery of prototype enables a better understanding of
the underlying image geometry and allows for further
physical plausible manipulation. We demonstrate our
framework on various indoor scene objects with simple
or hybrid functions.

1. Introduction

That form ever follows function. This is the law.

Louis Sullivan

With the popularization of commercial RGBD cameras
such as Microsoft’s Kinect, people can easily acquire 3D
geometry information for the RGB image. However, due
to occlusion and noise, recovering meaningful 3D contents
from single RGBD images remains one of the most chal-
lenging problems in computer vision and computer graphics
research.

Over the past years, many researches have been devoted
to recovering high-quality 3D information from RGBD im-
ages [9, 7]. Most of these approaches, starting either from
a single image or multiple images, are dedicated to recov-
ering the faithful 3D geometry of image objects, regardless
of their semantic relations, underlying physical settings, or

even functionality. In recent, researches have been devel-
oped to explore high-level structural information to facil-
itate 3D reconstruction [26, 19, 18]. For example, Shao et
al. [18] leverage physical stability to hallucinate the interac-
tions among images objects and obtain physically plausible
reconstruction of objects in RGBD images. Such high-level
semantic information plays an important role in constrain-
ing the underlying geometric structure.

Functionality is to the central of object design and un-
derstanding. Objects in man-made environments are often
designed for one or multiple intended functionalities (Fig-
ure 1). That form ever follows function is the law of physical
manufacturing [20]. In this paper, we develop an interac-
tive system to recover functional prototypes from a single
RGBD image. Our goal is to allow a novice user to be able
to quickly lift the image objects into 3D using 3D proto-
types, with just a small amount of high-level annotation-
s of junction types and geometric/functional relations; and
meanwhile explicitly explore and manipulate its function.
We focus on prototypes with simple proxies (e.g. cuboids)
representing parts as a means to alleviate the difficulties in
precise 3D reconstruction which is a harder problem. And,
by taking into consideration of physical functionality, we
could gain a much more faithful interpolation of the under-
lying objects. The functional properties could further be
used for applications such as in-context design and manip-
ulation.

It is a challenging problem to infer object function
just from user annotated junction types and geomet-
ric/functional relations. Our system should automatically

Figure 1. Objects in man-made environments are often designed
for one or multiple intended functionalities.
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Figure 2. Algorithmic pipeline. Given the input RGBD image (left), our system generates initial proxy cuboids (middle-left) from the
parts segmented by user with strokes or polygon tools. Then the user annotates a set of high-level relations among the proxies including
junction types and geometric/functional relations (middle-right). Finally our system simultaneously optimizes the junction parameters
(axis & position) and the part parameters (orientation, position and size) to get the functional prototype with parts moving as user expected
(right).

optimize the detailed junction parameters (axis & position)
in order to make the parts move correctly, whereas this task
is typically done in CAD softwares by carefully adjusting
the parameters by the user. Besides, initial proxies from
user-segmented depth is rather rough with incorrect orien-
tation and position, and would be much smaller than real
size because of occlusion. Hence initial proxies often fail to
satisfy the functional relations such as A covers B. There-
fore our system should also optimize the proxy parameters
(size & orientation & position), in order to make parts sat-
isfy functional relations.

Our method starts with a single RGBD image. We let
the user segment the image object into parts by scribbling
on the image using simple strokes or polygons. Then each
segmented part is assembled with a 3D proxies. We use sim-
ple cuboid in this paper [12]. Given the initial proxies, our
system then allows the user to annotate the junction type-
s and functional/geometric relations among parts. In a key
stage, our algorithm simultaneously optimizes the detailed
junction parameters (axis & position) and the proxy param-
eters (size & orientation & position). Finally, a functional
prototype is produced with moving parts satisfying the user
annotated relations.

We tested our system on a variety of man-made hybrid
functional objects taken from various sources. Our results
show that even with only a few user annotations, our algo-
rithm is capable of faithfully inferring geometry along with
the functional relations of the object parts. In summary, this
paper makes the following contributions:

• identifying and characterizing the problem of integrat-
ing functionality into image-based reconstruction;

• simultaneous optimization of detailed junction and ge-
ometry parameters from user’s high-level annotation
of junction types and functional/geometric relations;

• developing an interactive tool for functional annota-
tion, and testing in on a variety of indoor scene images
and physical designs.

2. Related Work

Proxy-based analysis. There has been a significant amoun-
t of work that leverages proxies to understand object-
s or scenes. Li et al. [14] and Lafarge et al. [13] con-
sider global relationships as constraints to optimize ini-
tial RANSAC-based proxies to produce structured output-
s; similarly, Arikan et al. [1] use prior relations plus user
annotations to create abstracted geometry. For scene anal-
ysis, a lot of approaches encode input scenes as collections
of planes, boxes, cylinders, etc. and studying their spatial
layout [5, 6, 8, 10, 11, 25]. Recently, proxies were com-
monly used for functionality analysis of a design. Umetani
et al. [21] use physical stability and torque limits for guided
furniture design in a modeling and synthesis setting. Shao
et al. [17] create 3D proxy models from a set of concep-
t sketches that depict a product from different viewpoints
and with different configurations of moving parts. Koo et
al. [12] annotate cuboids with high-level functional rela-
tionships to fabricate physical works-like prototypes. D-
ifferent from these approaches, to our knowledge, we are
the first to focus on the proxy-based functionality recovery
from a single RGBD image, particularly recovering how the
object works by jointly optimizing the part geometry along
with functional relationships based on user annotations.

Constraint-based modeling. Our work is related to the
constraint-based modeling research in the graphics and
CAD communities. Similar graphics work involves auto-
matically determining the relevant geometric relationship-
s between parts for high-level editing and synthesis of
3D models [4, 22, 2, 26]. Previous mechanical engineer-
ing research introduces declarative methods for specify-
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Figure 3. Initial proxy generation. The user is allowed to scrib-
ble strokes on the image (left), and based on the scribbles, depth-
augmented GrabCut is applied to segment the input object to dif-
ferent parts (middle). Initial cuboids are then fitted to the corre-
sponding points (right).

ing the relevant geometric constraints for a mechanical de-
sign [3, 24]. Some professional CAD softwares like Au-
toCAD and SolidWorks contain constraint-based modeling
modules, but the users are required to manually adjust the
low-level part/junction parameters to specify the relation-
ships. In contrast, our system can automatically interpret
the user annotated high level functionalities into the specif-
ic geometric constraints.

3D modeling from single RGBD images. Much effort has
been devoted to obtaining high-quality geometry informa-
tion from a single RGBD image [23, 7]. To recover struc-
ture information, Shen et al. [19] extract suitable model
parts from a database, and compose them to form high qual-
ity models from one RGBD image. Shao et al. [18] adopt
physical stability to recover unseen structures from a single
RGBD image using cuboids. However, their techniques fo-
cus on creating static 3D geometry and structure, whereas
our goal is to produce models with correctly moving parts.

3. Overview

As illustrated in Figure 2, given a single RGBD image,
we first let the user scribble strokes over the image objects
to cut out functional parts of the object. Those parts, be-
ing either a semantic component or an additive object, will
finally take place in the function recovery. To segment the
parts, we use a depth-augmented version of the GrabCut
segmentation [15] similar to [18]. Optionally, if the color
and depth are too similar which makes it difficult to sep-
arate the parts with GrabCut, we provide a polygon tool
like PhotoShop to do segmentation (see in accompanying
video). We assemble a set of proxies (cuboids in our case)
to fit each individual part. We then let the user annotated
the high-level relations among these cuboids. The relations
consist of three categories: junction relations (e.g., hinge,
sliding), functional relations (e.g., cover, fit inside, support,
flush, connect with) [12], and geometric relations (e.g., e-
qual size, symmetry).

Given the user annotated relations, in a key step, our
method recovers the cuboid orientation, position and size
along with the junction parameters using a joint optimiza-

tion. We choose the joint optimization strategy because the
cuboid parameters are always coupled with the junction pa-
rameters. That is, given a set of junctions, the cuboid ge-
ometry should change accordingly to satisfy the functional
constraints.

The optimization is done using a two-stage sampling s-
trategy. In the first stage, our algorithm samples possible
cuboid edges as junction candidates [17] for the specified
junction type. Given one set of possible junction candidates,
the orientation of the cuboids can be aligned and the posi-
tions can be refined by adjusting the corresponding junction
edges. We assume that the junction must be snapped to the
nearest cuboid face and be parallel to the nearest cuboid
edge (as in [12]).

With one set of adjusted junctions and cuboid orientation
and position, our method further samples a set of possible
candidate rest configurations for the cuboids. A rest config-
uration is a state where the object is in a closed state [12].
Because the cuboid size is not certified yet, the system does
not known which state is the closed state. Thus we sam-
ple possible candidates for the rest configurations, as shown
in Figure 6. For each possible rest configuration, we opti-
mize the cuboid size parameters according to the user anno-
tated functional/geometric relations as in [12]. Finally, the
optimized cuboids which lead to the minimal difference a-
gainst the initial point cloud are selected, and the best proto-
type with best junction and cuboid parameters is produced.
We next describe the detailed algorithm.

4. Algorithm

Our method takes as input a RGBD image of a functional
object. By functional we refer to objects those have partic-
ular moving parts, such as rotatable cover, slidable window,
etc. Such objects are very commonly seen in our daily life,
for instances, rolling chairs, foldable tables, printers, see-
saw etc. In addition, such objects populate our man-made
environments, especially indoor scenes.

Initial cuboids generation. Given the input RGBD im-
age, our first task is to anchor the object functional part-
s. Automatically identify image object and object parts in
RGBD images has been explored in recent methods, how-
ever, without any prior knowledge the performance is still
not satisfactory for our purposes. We resort to an interac-
tive solution. As in [18], we let the user to scribble on the
image object to specify object parts. In particular, we allow
the user to draw free strokes over parts to indicate a seg-
ment (part). We perform the depth-augmented GrabCut al-
gorithm [18] to the underlying point cloud along with their
pixel and adjacency information. Optionally, if the color
and depth are too similar which makes it difficult to sepa-
rate the parts with GrabCut, we provide a polygon tool like
PhotoShop to do segmentation. We then run the Efficient
RANSAC algorithm [16] on the selected points to generate
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Figure 4. User annotated junction types and some typical function-
al relations. From left to right: hinge junction, sliding junction,
exactly cover, just fit in, and support.

candidate planes. The largest of the planes is selected as
the primary plane, and the second largest plane is made or-
thogonal to the primary one. We extract the initial cuboids
determined by these orthogonal directions (third direction
is the cross product of the two plane normals). Figure 3 il-
lustrates the process of generating the initial cuboids. Note
that the generated cuboids have erroneous orientations, po-
sitions and sizes. In the next steps, our goal is to simulta-
neously optimize these parameters along with the junction
parameters so that the extracted cuboids form a prototype
whose functionality closely follows the image object.

Relation annotation. Denote the set of initial cuboids as
(B1, ..., BN ), in an important step, we let the user to anno-
tated the high-level relations among cuboids. To this end,
we define three categories of relations. Category I is the
junction relations (types) (e.g., A has a hinge relation w.r.t.
B), and Category II is functional relations (e.g., A covers
B) and Category III is geometric relations (e.g., symmetry,
equal size, etc.). To specify the Category I relation, the user
selects a pair of cuboids and right click a button to indicate
a junction type. The same interface is used for Category II
and III.

To further classify the relations, we define two main
types of junction relations, namely, hinge and sliding. For
functional relations, similar to [12], we define the following
function types: A covers B, A fits inside B, A supports B, A is
flush with B, and A connects with B. For geometric relations,
we mainly use 2 types: symmetry and equal size. These re-
lations pose different geometric constraints on the following
optimization stage and some relations might be dependent
on each other. For example, if both A and C covers B, A
is geometrically constrained w.r.t. B and C. Figure 4 shows
the junction types and some typical types of functional re-
lations. Note that unlike the method of [12], we do not need
to explicitly specify the junction position and axis as well
as cuboid orientations and positions, instead, we optimize
these parameters in a joint manner.

Joint optimization of cuboids and junctions. We now
detail our cuboid optimization algorithm. Our goal is to
jointly optimize the cuboid orientation and their shape pa-
rameters (i.e., positions, sizes) as well as the detailed junc-
tion parameters according to the user annotated relation-
s. The optimized cuboid configuration should deviate lit-
tle from the input point cloud and move correctly as user
expected. Essentially, given the input point cloud I and
initial cuboids B = (B1, ..., BN ), along with the user an-
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Figure 5. Junction configuration graph. Each cuboid corresponds
to the node with the same color, while each annotated junction
type corresponds to the multiple connections between nodes. One
connection is associated with one candidate junction parameter.

notated junction types J = (J1, ..., JM ), functional re-
lations F = (F1, ..., FP ) and geometric relations G =
(G1, ..., GQ), we want to obtain the best junction param-
eters Θ∗ = (Θ∗1, ...,Θ

∗
M ) for the junction types J along

with the best cuboids B∗ = (B∗1 , ..., B
∗
N ), satisfying the

functional relations F and geometric relations G. The for-
mulation is defined as:

argmin
B,Θ

E(B,Θ, I) s.t. B,Θ satisfy J ,F ,G. (1)

Here E(B,Θ, I) measures the deviation from the optimized
cuboid configuration to the input point cloud, which is de-
fined as

E(B,Θ, I) =
∑
j

∑
k

dist(Bj − pkj ), (2)

where
∑

k dist(Bj − pkj ) gives the deviation from cuboid
Bj to its containing points pkj .

The challenge is how to wrap down the annotated rela-
tions to geometric constraints while retaining the cuboids’
conformity with respect to the input point cloud. Since the
annotated relations are high level specifications, this leads
to large search space in the optimization due to the poten-
tial ambiguities raised from the loose annotations. Another
challenge is that the cuboid parameters are highly coupled
with the junction parameters. That is, given a set of junc-
tions, the cuboid geometry should change accordingly to
satisfy the functional constraints. Thus we cannot optimize
the parameters locally and separately, but instead do it in a
global manner. To solve the above challenges, we device a
multi-stage optimization paradigm to first populate the so-
lution space with a two-step sampling algorithm and then
jointly optimize the cuboid parameters and junction param-
eters.

In the first stage, we sample the possible junction’s pa-
rameters, i.e., axial position and orientation. Let us denote
the set of junction types as (J1, ..., JM ), and the parameters
we wish to estimate as (Θ1, ...,ΘM ). We start by building
a junction configuration graph. For each cuboid we create
a graph node and for each junction type Ji, we create mul-
tiple graph connections, with each connection associating
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Figure 6. Possible rest poses for the hinge junctions. Since we
don’t know which face of the cabinet door should cover the cabi-
net, we rotate the hinge junctions to sample a set of rest configura-
tions to guess possible covering faces. (Figure 6)

with a candidate parameter Θl
i for Ji. If A forms a hinge

relation with B, each cuboid edge of A can be a candidate
hinge axis. We choose only those cuboid edges which are
closely attained to B. More specially, we only choose the
edges parallel to the face if there is also a cover relation,
and only choose the edges perpendicular to the face if there
is a fit inside or support relation. This leads to a configura-
tion graph where any traversal path of the graph represents
a possible configuration of junctions. Figure 5 shows such
a graph. Algorithm 1 gives the pseudo-code of this state.

Given the junction configuration graph, for each junction
configuration we optimize the cuboids orientation, position
and size based on annotated functional/geometric relations.
The cuboid orientation and position is firstly adjusted based
on the current candidate junction configuration, by adjust-
ing the corresponding junction edges. We assume that the
junction must be snapped to the nearest cuboid face and be
parallel to the nearest cuboid edge (as in [12]). Then we
optimize the cuboid size to satisfy the functional/geometric
relations from current junction configuration. Note that the
functional relations typically indicate the geometry of the
cuboids satisfying certain constraints in a closed configu-
ration (i.e., a rest configuration [12]. For an instance, if A
covers B, this typically means that one face of A is rotat-
ed about the hinge junction to be in close agreement with
a face of B (Figure 6). Since we don’t know which face
covers B, we enumerate through multiple possible cuboid
faces to sample a set of rest configurations (Figure 6) and
for each rest configuration we optimize the cuboid param-
eters. In specific, given a rest configuration of cuboids, we
employ a similar optimization method of [12] to optimize
the cuboid parameters (B∗1 , ..., B

∗
N ). We then compute the

optimization cost from Eq. (2). Finally, the configuration
which leads to the least deviation from the point cloud is
selected as the best configuration and the optimized cuboid-
s are then computed. The overall algorithm is detailed in
Algorithm 2.

5. Results

We used our system to recover functionality prototype-
s for 6 different objects (Figure 7). The first 4 examples
(cabinet, drawer, firebox and chair) are real RGBD images
captured with Microsoft Kinect, while the last 2 examples
(toolbox and dining table) are synthetic depth data captured

Algorithm 1 Building Junction Configuration Graph
Input: N initial cuboids (B1, ..., BN ); M junctions (J1, ..., JM )
with unknown parameters (Θ1, ...,ΘM );
Output: Multi-connection junction Graph G := (V,E), where
each connection eji corresponds to a parameter Θj

i for Ji;
G← ∅
for i = 1 to N do
Vi ← Bi

end for
/*** Building multi-connections between nodes ***/
for i = 1 to M do
Bc ← child cuboid of Ji
Bp ← parent cuboid of Ji
l← 1
/*** Test each edge of the child cuboid ***/
for j = 1 to 12 do
Ej ← j-th edge of Bc

Dj ← direction of Ej

Cj ← center of Ej

for k = 1 to 6 do
Fk ← k-th face of Bp

Nk ← normal of Fk

if dist(Ej , Fk) < εd and abs(dot(Dj , Nk)) < εa and
abs((dot(Dj , Nk)− 1) < εa then

Θl
i ← (Cj , Dj) //set candidate parameter for the Ji

eli ← Θl
i //add a connection eli

l← l + 1
end if

end for
end for

end for

from existing 3D designs. Please check our submission
video to see how the various parts move and fit together.
Creating one functional prototype took 0.5-5 minutes for
our experimental examples. The time for user interaction
(segmenting points with strokes and specifying part rela-
tionships, plus the waiting time for the plane detection for
initial cuboid generation) ranges from 27 seconds to 108
seconds, and the optimization time varies a lot from 1 sec-
ond to 241 seconds, depending on the sampling space of
junction parameters and rest poses. The experimental statis-
tics are listed in Table 1.

As shown in Figure 2, though the geometry of our pro-
totypes may appear simple, the relationships between the
moving parts are often complex. Adjusting the geometry
and relation parameters would be rather time consuming
and labor consuming. Our system automatically infer the
junction parameters (position & axis) and the geometry pa-
rameters (size & position & orientation) by jointly optimiz-
ing them together under the user annotated high-level con-
straints. All the desired part parameters and junction pa-
rameters are obtained in our experiment data. For exam-
ple, in Figure 7 (1), our algorithm automatically place the
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Figure 7. Experimental results. From left to right: the input RGBD image, initial cuboids, optimized cuboids and junctions, and how parts
move and fit after the optimization (3 configurations).

hinge junctions to the correct edges of the cabinet doors, and
adjust their orientations accordingly by aligning the hinge
junctions onto the nearest cabinet face and make them par-
allel to the nearest cabinet edges. The size of the doors are
also optimized to be equal size and cover the cabinet. The
drawers in Figure 7 (1) and (2) obtain the desired orientation
by aligning their sliding junctions with the cabinet, and the
size is optimized to just fit inside the cabinet and be equal.
In Figure 7 (3), the top cap and the front door are both op-
timized to just cover to the boundary of the firebox. For the
chair example (Figure 7 (4)), due to occlusion, the initial

cuboids for the leg and the armrest have smaller size than
real, but our algorithm successfully extend the leg to sup-
port the seat, and extend the armrests to connect with the
back. Similarly, the occluded leg in Figure 7 (5) is extended
to support the box and has the same size as other legs. In
Figure 7 (6), the orientation and the size of the two doors
are optimized to support the table top, and the orientation
of the top is optimized to be horizontal.

User study. To better evaluate whether our approach can
recover correct functional prototypes, we showed our sys-
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Algorithm 2 Optimizing cuboids and junctions
Input: input point cloud I; N initial cuboids B = (B1, ..., BN );
junction configuration graph G; functional relations F ; geometric
relations G
Output: N optimized cuboids B∗ = (B∗1 , ..., B

∗
N ); M optimized

junction parameters Θ∗ = (Θ∗1, ...,Θ
∗
M );

/*** Sampling candidate junction parameters from G and ac-
cordingly optimizing the cuboid orientation, position and size
***/
err ← INF //deviation from cuboids to input point cloud
while 1 do

Gather an connection combination (ek1 , ..., e
l
M ) from G

if no more connection combination then
break

end if
Create junctions with parameters Θ′ = (Θk

1 , ...,Θ
l
M ) from

(eki , ..., e
l
M )

adjust the cuboid position and orientation by snapping the
junction edge
/*** Calculating possible angles for rest configurations ***/
for i = 1 to M do

calculate candidate angles (α1
i , ..., α

w
i ) to parallelize par-

ent and child
end for
/*** Sampling possible rest configurations ***/
while 1 do

Gather an angle combination (αu
1 , ..., α

v
M )

if no more angle combination then
break

end if
Transform to rest configuration with (αu

1 , ..., α
v
M )

Optimizing the cuboid size satisfying F and G to get an
solution B′ = (B′1, ..., B

′
N )

if E(B′,Θ′, I) < err then
err ← E(B′,Θ′, I)
(B∗1 , ..., B

∗
N )← (B′1, ..., B

′
N )

(Θ∗1, ...,ΘM∗)← (Θk
1 , ...,Θ

l
M )

end if
end while

end while

tem to 20 students. 5 of them are undergraduate major-
ing in computer science, and another 4 students are master
candidates in industry design. The rest ones are 8 master
candidates and 3 PhD candidates in computer science. We
showed them the captured RGBD images and asked them
to imagine how the objects work. Then these students used
our system to add annotations to the pre-generated initial
cuboids based on their imagination. All the students report-
ed that our system successfully recovers the functional pro-
totypes with the parts moving as they expected. Besides,
the optimized part geometry also satisfies their imagina-
tion. One exception is that 6 students said they imagined
the hinge junction on the cabinet door (Figure 7 (1)) was
exactly on the boundary edge of the cabinet, while our op-

Model Hinge Slide Fxn Geom Int. Time (s) Opt. Time (s)
Cabinet 2 2 4 2 62 18
Drawer 0 2 2 1 29 1
Fire box 2 0 2 0 27 16

Chair 2 0 3 0 90 2
Tool box 1 3 6 0 108 3

Dining table 4 0 6 2 55 241

Table 1. Statistics for recovered functional prototypes.

timization did not consider it as the best configuration.

Comparison with real objects and 3D design models. We
also check the recovered prototypes with the captured re-
al objects and 3D design models. As illustrated in the top
2 rows in Figure 8, the generated prototypes have similar
functionality as the real objects, and they can move parts
to generate almost the same configurations as the real ones.
Besides, the optimized simple cuboids can approximate the
real geometry well, with almost the same size, orientation
and position. We also compare our recovered prototype-
s with the 3D design models whose junctions are added
and adjusted manually in Autodesk 3ds Max (bottom row
in Figure 8). We can see our recovered prototype from us-
er’s high-level annotation has very similar functionality as
the manually designed model.

6. Conclusions

In this work, we present a novel approach to recover
functional prototypes from user’s high-level annotations on
relationships. By providing the junction types and other
functional/geometric relations, the junction parameters and
part geometry parameters are jointly optimized. With such
interface, we allow users to focus on the functional goals of
the target object rather than working on low-level geometry
and junction parameters. Our results demonstrate that our
system can generate functional models with a small number
of user annotations. In the user study, the recovered proto-
types work correctly as the users expected. The comparison
with the real objects and 3D design models also prove the
feasibility of our system.

Limitations and future work. The main limitation of our
approach is that we use cuboids as proxies to approximate
the part geometry. While compositions of cuboids are suf-
ficient for the understanding of functionality of many prod-
ucts, users often like higher fidelity geometry to better un-
derstand the geometry and relationships. Similarly, the re-
stricted set of junction types is another limitation. In the
future, we will add other primitives for part proxy, such as
cylinder and sphere. We also plan to integrate more junc-
tion types between parts, like ball junctions and simple me-
chanical units. Current optimization framework may need
to be modified to handle more geometry and junctions. An-
other future direction is to consider other high-level func-
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Figure 8. Top two rows: comparison result with the captured real data; bottom row: comparison result with the 3D design model. We can
see that our system can faithfully recover the functionality as user expected.

tional constraints among parts. Exploring more high-level
relationships would help the further exploration of the func-
tionality as well as the geometric properties.
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